×

Epsilon-transformation: exploiting phase transitions to solve combinatorial optimization problems. (English) Zbl 1508.68343

Summary: It has been shown that there exists a transition in the average-case complexity of tree search problems, from exponential to polynomial in the search depth. We develop a new method, called \(\varepsilon\)-transformation, which makes use of this complexity transition, to find a suboptimal solution. With a random tree model, we show that, as the tree depth approaches infinity, the expected number of nodes expanded by branch-and-bound (BnB) using \(\varepsilon\)-transformation is at most cubic in the search depth, and that the relative error of the solution cost found with respect to the optimal solution cost is bounded above by a small constant. We also present an iterative version of \(\varepsilon\)-transformation that can be used to find both suboptimal and optimal goal nodes. Depth-first BnB (DFBnB) using iterative \(\varepsilon\)-transformation significantly improves upon DFBnB on random trees with large branching factors and deep goal nodes, finding a better solution sooner. We then present experimental results for \(\varepsilon\)-transformation and iterative \(\varepsilon\)-transformation on the asymmetric traveling salesman problem (ATSP) and the maximum Boolean satisfiability problem, and identify the conditions under which these two methods are effective. On the ATSP, DFBnB using \(\varepsilon\)-transformation outperforms a well-known local search method, and DFBnB using iterative \(\varepsilon\)-transformation improves upon DFBnB.

MSC:

68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
68Q25 Analysis of algorithms and problem complexity
68Q87 Probability in computer science (algorithm analysis, random structures, phase transitions, etc.)
90C27 Combinatorial optimization
Full Text: DOI

References:

[1] Ashour, S., An experimental investigation and comparative evaluation of flow-shop scheduling techniques, Oper. Res., 18, 541-549 (1970) · Zbl 0193.20001
[2] Balas, E.; Toth, P., Branch and bound methods, (Lawler, E. L.; etal., The Traveling Salesman Problem (1985), Wiley: Wiley Essex), 361-401 · Zbl 0568.90068
[3] Carpaneto, G.; Toth, P., Some new branching and bounding criteria for the asymmetric traveling salesman problem, Management Sci., 26, 736-743 (1980) · Zbl 0445.90089
[4] Cheeseman, P.; Kanefsky, B.; Taylor, W. M., Where the really hard problems are, (Proceedings IJCAI-91. Proceedings IJCAI-91, Sydney, Australia (1991)), 331-337 · Zbl 0747.68064
[5] Crawford, J. M.; Auton, L. D., Experimental results on the crossover point in satisfiability problems, (Proceedings AAAI-93. Proceedings AAAI-93, Washington, DC (1993)), 21-27
[6] Dechter, R.; Pearl, J., Generalized best-first search strategies and the optimally of A^∗, J. ACM, 32, 505-536 (1985) · Zbl 0631.68075
[7] Freuder, E. C.; Wallace, R. J., Partial constraint satisfaction, Artif. Intell., 58, 21-70 (1992)
[8] Frieze, A.; Galbiati, G.; Maffioli, F., On the worst-case performance of some algorithms for the asymmetric traveling salesman problem, Network, 12, 23-39 (1982) · Zbl 0478.90070
[9] Garey, M. R.; Johnson, D. S., (Computers and Intractability: A Guide to the Theory of NP-Completeness (1979), Freeman: Freeman New York) · Zbl 0411.68039
[10] Gaschnig, J. G., Performance measurement and analysis of certain search algorithms, (Computer Science Department, Carnegie-Mellon University, Tech. Report CMU-CS-79-124. Computer Science Department, Carnegie-Mellon University, Tech. Report CMU-CS-79-124, Ph.D. Thesis (1979)), Pittsburgh, PA
[11] Held, M.; Karp, R. M., The traveling salesman problem and minimum spanning trees, Oper. Res., 18, 1138-1162 (1970) · Zbl 0226.90047
[12] Huberman, B. A.; Hogg, T., Phase transitions in artificial intelligence systems, Artif. Intell., 33, 155-171 (1987)
[13] Ibaraki, T., Computational efficiency of approximate branch-and-bound algorithms, Math. Oper. Res., 1, 287-298 (1976) · Zbl 0369.90090
[14] Ibaraki, T., Enumerative Approaches to Combinatorial Optimization—Part I, (Annals of Operations Research, 10 (1987), Scientific: Scientific Basel, Switzerland)
[15] Ibaraki, T.; Muro, S.; Murakami, T.; Hasegawa, T., Using branch-and-bound algorithms to obtain suboptimal solutions, Z Oper. Res., 27, 177-202 (1983) · Zbl 0527.65043
[16] Johnson, D. S., Local optimization and the traveling salesman problem, (Proceedings 17th International Colloquium on Automata, Languages and Programming. Proceedings 17th International Colloquium on Automata, Languages and Programming, Warwick, England (1990)) · Zbl 0766.90079
[17] Kanellakis, P. C.; Papadimitriou, C. H., Local search for the asymmetric traveling salesman problem, Oper. Res., 28, 1086-1099 (1980) · Zbl 0447.90082
[18] Karp, R. M., A patching algorithm for the nonsymmetric traveling-salesman problem, SIAM J. Comput., 8, 561-573 (1979) · Zbl 0427.90064
[19] Karp, R. M.; Pearl, J., Searching for an optimal path in a tree with random costs, Artif. Intell., 21, 99-117 (1983) · Zbl 0507.68034
[20] Kohler, W. H.; Steiglitz, K., Enumerative and iterative computational approaches, (Coffman, J. E.G., Computer and Job-Shop Scheduling Theory (1976), Wiley: Wiley New York)
[21] Korf, R. E., Search: a survey of recent results, (Shrobe, H. E., Exploring Artificial Intelligence (1989), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 197-237
[22] Larrabee, T.; Tsuji, Y., Evidence for a satisfiability threshold for random 3CNF formulas, (Working Notes of AAAI-93 Spring Symposium: AI and NP-Hard Problems. Working Notes of AAAI-93 Spring Symposium: AI and NP-Hard Problems, Stanford, CA (1993)), 112-118
[23] Lawler, E. L.; Lenstra, J. K.; Kan, A. H.G. Rinnooy; Shmoys, D. B., (The Traveling Salesman Problem (1985), Wiley: Wiley Essex) · Zbl 0563.90075
[24] Lawler, E. L.; Wood, D. E., Branch-and-bound methods: a survey, Oper. Res., 14, 699-719 (1966) · Zbl 0143.42501
[25] Lin, S.; Kernighan, B. W., An effective heuristic algorithm for the traveling salesman problem, Oper. Res., 21, 498-516 (1973) · Zbl 0256.90038
[26] Martello, S.; Toth, P., (Knapsack Problems: Algorithms and Computer Implementation (1990), Wiley: Wiley West Sussex, England) · Zbl 0708.68002
[27] McDiarmid, C. J.H., Probabilistic analysis of tree search, (Gummett, G. R.; Welsh, D. J.A., Disorder in Physical Systems (1990), Oxford Science), 249-260 · Zbl 0738.60084
[28] McDiarmid, C. J.H.; Provan, G. M.A., An expected-cost analysis of backtracking and non-backtracking algorithms, (Proceedings IJCAI-91. Proceedings IJCAI-91, Sydney, Australia (1991)), 172-177 · Zbl 0745.68108
[29] D.L. Miller, Personal communication (1992).
[30] Miller, D. L.; Pekny, J. F., Exact solution of large asymmetric traveling salesman problems, Science, 251, 754-761 (1991)
[31] Minton, S.; Johnston, M. D.; Philips, A. B.; Laird, P., Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems, Artif. Intell., 58, 161-205 (1992) · Zbl 0782.90054
[32] Mitchell, D.; Selman, B.; Levesque, H., Hard and easy distributions of SAT problems, (Proceedings AAAI-92. Proceedings AAAI-92, San Jose, CA (1992)), 459-465
[33] Papadimitriou, C. H.; Kanellakis, P. C., Flowshop scheduling with limited temporary storage, J. ACM, 27, 533-549 (1980) · Zbl 0475.68014
[34] Papadimitriou, C. H.; Steiglitz, K., (Combinatorial Optimization: Algorithms and Complexity (1982), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ) · Zbl 0503.90060
[35] Pearl, J., (Heuristics (1984), Addison-Wesley: Addison-Wesley Reading, MA)
[36] Pohl, I., Practical and theoretical considerations in heuristic search algorithms, (Elcock, E. W.; Michie, D., Machine Intelligence, 8 (1977), Wiley: Wiley New York), 55-72
[37] Reddi, S. S.; Ramamoorthy, C. V., On the flow-shop sequencing problem with no wait in process, Oper. Res. Q., 23, 323-331 (1972) · Zbl 0238.90080
[38] Rńyi, A., (Probability Theory (1970), North-Holland: North-Holland Amsterdam) · Zbl 0206.18002
[39] Selman, B.; Levesque, H.; Mitchell, D., A new method for solving hard satisfiability problems, (Proceedings AAAI-92. Proceedings AAAI-92, San Jose, CA (1992)), 440-446
[40] Williams, C. P.; Hogg, T., Exploiting the deep structure of constraint problems, Artif. Intell., 70, 73-117 (1994) · Zbl 0938.68827
[41] Wilson, K. G., Problems in physics with many scales of length, Sci. Amer., 241, 158-179 (1979)
[42] Zhang, W., Truncated branch-and-bound: a case study on the asymmetric TSP, (Working Notes of AAAI-93 Spring Symposium: AI and NP-Hard Problems. Working Notes of AAAI-93 Spring Symposium: AI and NP-Hard Problems, Stanford, CA (1993)), 160-166
[43] Zhang, W.; Korf, R. E., An average-case analysis of branch-and-bound with applications: Summary of results, (Proceedings AAAI-92. Proceedings AAAI-92, San Jose, CA (1992)), 545-550
[44] Zhang, W.; Korf, R. E., Depth-first vs. best-first search: New results, (Proceedings AAAI-93. Proceedings AAAI-93, Washington, DC (1993)), 769-775
[45] Zhang, W.; Korf, R. E., A unified view of complexity transitions on the traveling salesman problem, (Working Notes of AAAI-94 Workshop on Experimental Evaluation of Reasoning and Search Methods. Working Notes of AAAI-94 Workshop on Experimental Evaluation of Reasoning and Search Methods, Seattle, WA (1994))
[46] Zhang, W.; Korf, R. E., Performance of linear-space search algorithms, Artif. Intell., 79, 241-292 (1995) · Zbl 1013.68502
[47] Zhang, W.; Korf, R. E., A study of complexity transitions on the asymmetric traveling salesman problem, Artif. Intell., 81, 223-239 (1996), (this volume) · Zbl 1508.68354
[48] Zhang, W.; Pemberton, J. C., Epsilon-transformation: exploiting phase transitions to solve combinatorial optimization problems, (Tech. Report UCLA-CSD-940003 (1994), Computer Science Department, University of California: Computer Science Department, University of California Los Angeles, CA)
[49] Zhang, W.; Pemberton, J. C., Epsilon-transformation: Exploiting phase transitions to solve combinatorial optimization problems—initial results, (Proceedings AAAI-94. Proceedings AAAI-94, Seattle, WA (1994))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.