×

A nonlinear spectral rate-dependent constitutive equation for electro-viscoelastic solids. (English) Zbl 1446.74123

Summary: In this communication a spectral constitutive equation for nonlinear viscoelastic-electroactive bodies with short-term memory response is developed, using the total stress formulation and the electric field as the electric independent variable. Spectral invariants, each one with a clear physical meaning and hence attractive for use in experiment, are used in the constitutive equation. A specific form for constitutive equation containing single-variable functions is presented, which are easy to analyze compared to multivariable functions. The effects of viscosity and an electric field are studied via the results of boundary value problems for cases considering homogeneous distributions for the strains and the electric field, and some these results are compared with experimental data.

MSC:

74F15 Electromagnetic effects in solid mechanics
74D10 Nonlinear constitutive equations for materials with memory
Full Text: DOI

References:

[1] Ask, A.; Menzel, A.; Ristinmaa, M., Electrostriction in electro-viscoelastic polymers, Mech. Mater., 50, 9-21 (2012)
[2] Ask, A.; Menzel, A.; Ristinmaa, M., Phenomenological modeling of viscous electrostrictive polymers, Int. J. Nonlinear Mech., 47, 156-165 (2012)
[3] Bar-Cohen, Y.: Electrostictive polymers: current capabilities and challenges. In: Proceedings of the SPIE Smart Structures and Materials Symposium, EAPAD Conference, San Diego, CA, Paper 4695-02 (2002)
[4] Bossis, G.; Abbo, C.; Cutillas, S.; Lacis, C.; Métayer, C., Electroactive and electrostructures elastomers, Int. J. Mod. Phys. B, 15, 564-573 (2001)
[5] Büschel, A.; Klinkel, S.; Wagner, W., Dielectric elastomers. Numerical modeling of nonlinear visco-electroelasticity, Int. J. Numer. Methods Eng., 93, 834-856 (2013) · Zbl 1352.74190
[6] Bustamante, R.; Shariff, MHBM, New sets of invariants for an electro-elastic body with one and two families of fibres, Eur. J. Mech. A-Solid, 58, 42-53 (2016) · Zbl 1406.74210
[7] Canzız, B.; Dal, H.; Kaliske, M., Computational cardiology: a modified Hill model to describe the electro-visco-elasticity of the myocardium, Comput. Methods Appl. Mech. Eng., 315, 434-466 (2017) · Zbl 1439.74193
[8] Chen, X., Nonlinear electro-thermo-viscoelasticity, Acta Mech., 211, 49-59 (2010) · Zbl 1397.74039
[9] Denzer, R.; Menzel, A., Configurational forces for quasi-incompressible large strain electro-viscoelasticity. Applications to fracture mechanics, Eur. J. Mech. A-Solids, 48, 3-15 (2014) · Zbl 1406.74582
[10] Dorfmann, A.; Ogden, RW, Nonlinear electroelasticity, Acta Mech., 174, 167-183 (2005) · Zbl 1066.74024
[11] Dorfmann, A.; Ogden, RW, Nonlinear electroelastic deformations, J. Elast., 82, 99-127 (2006) · Zbl 1091.74014
[12] Fang, DN; Soh, AK; Li, CQ; Jiang, B., Nonlinear behavior of 0-3 type ferroelectric composites with polymer matrices, J. Mater. Sci., 36, 5281-5288 (2001)
[13] Gizzia, A.; Anna Pandolf, A., Visco-hyperelasticity of electro-active soft tissues, Procedia IUTAM, 12, 162-175 (2015)
[14] Holzapfel, GA; Ogden, RW, On planar biaxial tests for anisotropic nonlinearly elastic solids: a continuum mechanical framework, Math. Mech. Solids, 14, 474-489 (2009) · Zbl 1257.74019
[15] Jones, DF; Treloar, LRG, The properties of rubber in pure homogeneous strain, J. Phys. D Appl. Phys., 8, 11, 1285-1304 (1975)
[16] Hong, W., Modeling viscoelastic dielectrics, J. Mech. Phys. Solids, 59, 637-650 (2011) · Zbl 1270.74069
[17] Khan, K.; Wufai, H.; El Sayed, T., A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer, Comput. Mech., 52, 345-360 (2013) · Zbl 1398.74027
[18] Kovetz, A., Electromagnetic Theory (2000), Oxford: University Press, Oxford · Zbl 1038.78001
[19] Mehnert, M.; Hossain, M.; Steinmann, P., Numerical modeling of thermo-electro-viscoelasticity with field dependent material parameters, Int. J. Nonlinear Mech., 106, 13-24 (2018)
[20] Mehnert, M.; Hossain, M.; Steinmann, P., Experimental and numerical investigations of the electro-viscoelastic behavior of VHB \(4905^{TM}\), Eur. J. Mech./ A Solids, 77, 103797 (2019)
[21] Murphy, JG; Biwa, S., The counterintuitive mechanical response in simple tension of arterial models that are separable functions of the \(I_1, I_4, I_6\) invariants, Int. J. Nonlinear Mech., 90, 72-81 (2017)
[22] Ogden, RW, Non-Linear Elastic Deformations (1984), Chichester: Ellis Horwood, Chichester · Zbl 0541.73044
[23] Ogden, RW; Steigmann, DJ, Mechanics and Electrodynamics of Magneto- and Electro-elastic Materials (2011), Wien: Springer, Wien · Zbl 1209.74005
[24] Pioletti, DP; Rakotomanana, LR, Non-linear viscoelastic laws for soft biological tissues, Eur. J. Mech. A-Solid, 19, 5, 749-759 (2000) · Zbl 0984.74052
[25] Saxena, P.; Vu, DK; Steinmann, P., On rate-dependent dissipation effects in electro-elasticity, Int. J. Nonlinear Mech., 62, 1-11 (2014)
[26] Shariff, MHBM, Strain energy function for filled and unfilled rubberlike material, Rubber Chem. Technol., 73, 1-21 (2000)
[27] Shariff, MHBM, Nonlinear transversely isotropic elastic solids: an alternative representation, Q. J. Mech. Appl. Math., 61, 129-149 (2008) · Zbl 1140.74007
[28] Shariff, MHBM, Physical invariants for nonlinear orthotropic solids, Int. J. Solids Struct., 48, 1906-1914 (2011)
[29] Shariff, MHBM, Physical invariant strain energy function for passive myocardium, Biomech. Model. Mechanobiol., 12, 2, 215-223 (2013)
[30] Shariff, MHBM, The number of independent invariants of an n-preferred direction anisotropic solid, Math. Mech. Solids, 22, 10, 1989-1996 (2016) · Zbl 1386.74039
[31] Shariff, MHBM, Anisotropic separable free energy functions for elastic and non-elastic solids, Acta Mech., 227, 11, 3213-3237 (2016) · Zbl 1388.74023
[32] Shariff, MHBM; Bustamante, R.; Merodio, J., On the spectral analysis of residual stress in finite elasticity, IMA J. Appl. Math., 82, 3, 656-680 (2017) · Zbl 1408.74008
[33] Shariff, MHBM; Bustamante, R.; Merodio, J., Rate type constitutive equations for fiber reinforced nonlinearly viscoelastic solids using spectral invariants, Mech. Res. Commun., 84, 60-64 (2017)
[34] Shariff, MHBM, On the spectral constitutive modelling of transversely isotropic soft tissue: physical invariants, Int. J. Eng. Sci., 120, 199-219 (2017) · Zbl 1423.74029
[35] Shariff, MHBM, Spectral derivatives in continuum mechanics, Q. J. Mech. Appl. Mech., 70, 4, 479-476 (2017) · Zbl 1458.74004
[36] Shariff, MHBM; Bustamante, R.; Merodio, J., A nonlinear electro-elastic model with residual stresses and a preferred direction, Math. Mech. Solids, 25, 3, 838-865 (2020) · Zbl 1446.74124
[37] Shariff, MHBM; Bustamante, R.; Merodio, J., A nonlinear constitutive model for a two preferred direction electro-elastic body with residual stresses, Int. J. Nonlinear Mech., 119, 103352 (2020)
[38] Shariff, MHBM, The number of independent invariants for \(n\) symmetric second order tensors, J. Elast., 134, 1, 119-126 (2019) · Zbl 1411.74021
[39] Shariff, M.H.B.M.: The number of independent invariants for \(m\) unit vectors and \(n\) symmetric second order tensors is \(2m+ 6n-3\). arXiv preprint arXiv:1907.09941 (2019)
[40] Shariff, MHBM, A general spectral nonlinear elastic consistent tangent modulus tensor formula for finite element software, Results Appl. Math., 7, 100113 (2020) · Zbl 1464.74029
[41] Spencer, AJM; Eringen, AC, Theory of invariants, Continuum Physics I, 239-253 (1971), New York: Academic Press, New York
[42] Truesdell, CA; Toupin, R.; Flügge, S., The classical field theories, Handbuch der Physik, 226-902 (1960), Berlin: Springer, Berlin
[43] Vogel, F.; Göktepe, S.; Steinmann, P.; Kuhl, E., Modeling and simulation of viscous electro-active polymer, Eur. J. Mech. A-Solids, 48, 112-128 (2014) · Zbl 1406.74226
[44] Wang, S.; Decker, M.; Henann, DL; Chester, SA, Modeling of dielectric viscoelastomers with applications to electromechanical instabilities, J. Mech. Phys. Solids, 95, 213-229 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.