×

A continuous model for the wave scattering by a bounded defective domain. (English) Zbl 1387.74060

dell’Isola, Francesco (ed.) et al., Mathematical modelling in solid mechanics. Contributions mainly based on the presentations at the international conference ‘Emerging trends in applied mathematics and mechanics’, ETAMM 2016, Perpignan, France, May 30 – June 3, 2016. Singapore: Springer (ISBN 978-981-10-3763-4/hbk; 978-981-10-3764-1/ebook). Advanced Structured Materials 69, 107-122 (2017).
Summary: Elastic wave propagation and scattering in a media containing a continuous density of defect is modeled with a geometrical approach. The material is supposed to be a Riemann-Cartan manifold with a connection enriched by a nonzero torsion. The study is followed until to reveal analytical solutions. The scattering of a defective domain shows explicitly some non-classical phenomena.
For the entire collection see [Zbl 1381.74008].

MSC:

74J20 Wave scattering in solid mechanics
53Z05 Applications of differential geometry to physics

Keywords:

manifold; triad; suffix
Full Text: DOI

References:

[1] Cartan, E.: On Manifolds with an Affine Connection and the Theory of General Relativity. Bibliopolis, Napoli (1986) · Zbl 0657.53001
[2] Futhazar, G., Le Marrec, L., Rakotomanana, L.R.: Covariant gradient continua applied to wave propagation within defective material. Arch. App. Mech. 84(9), 1339-1356 (2014) · Zbl 1341.35157 · doi:10.1007/s00419-014-0873-7
[3] Kröner, E.: Continuum theory of defects, Physics of defects. 35, 217-315 (1981)
[4] Kröner, E.: Dislocation: a new concept in the continuum theory of plasticity. J. Math. Phys. 42(1-4), 27-37 (1963) · Zbl 0129.23202
[5] Kruml, T., Caillard, D., Dupas, C., Martin, J.L.: A transmission electron microscopy in situ study of dislocation mobility in Ge. J. Phys. Condens. Matter 14(48), 12897-12902 (2002) · doi:10.1088/0953-8984/14/48/330
[6] Lazar, M.: An elastoplastic theory of dislocations as a physical field with torsion. J. Phys. 35(8), 1983-2004 (2002) · Zbl 1035.74014
[7] Lund, F.: Response of a stringlike dislocation loop to an external stress. J. Mater. Res. 3(2), 280-297 (1988) · doi:10.1557/JMR.1988.0280
[8] Maugin, G.A.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. Taylor & Francis, London (2010) · Zbl 1234.74002 · doi:10.1201/b10356
[9] Maurel, A., Mercier, J.-F., Lund, F.: Scattering of an elastic wave by a single dislocation. J. Acoust. Soc. Am. 115(6), 2773-2780 (2004) · doi:10.1121/1.1687735
[10] Maurel, A., Pagneux, V., Barra, F., Lund, F.: Surface acoustic waves in interaction with a dislocation. Ultrasonics 50(2), 161-166 (2010) · doi:10.1016/j.ultras.2009.09.020
[11] Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. Cambridge University Press, Cambridge (1953) · Zbl 0051.40603
[12] Mura, T.: Continuous distribution of moving dislocations. Philos. Mag. 8(89), 843-857 (1963) · doi:10.1080/14786436308213841
[13] Nabarro, F.R.N.: The interaction of screw dislocations and sound waves. Proc. R. Soc. Lond. A 209(1097), 278-290 (1951) · Zbl 0044.44904 · doi:10.1098/rspa.1951.0203
[14] Nakahara, M.: Geometry, Topology and Physics. CRC Press, IOP Publishing, England (1996) · Zbl 0764.53001
[15] Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rat. Mech. Anal. 2, 197-226 (1958) · Zbl 0083.39303
[16] Rakotomanana, L.R.: A Geometric Approach to Thermomechanics of Dissipating Continua. Birkhauser, Boston (2003) · Zbl 1071.74001
[17] Rakotomanana, L.R.: Contribution à la modélisation géométrique et thermodynamique d’une classe de milieux faiblement continus. Arch. Rat. Mech. Anal. 141, 199-236 (1998) · Zbl 0920.73021 · doi:10.1007/s002050050076
[18] Salvetat, J.-P., Briggs, G., Andrew, D., Bonard, J.-M., Bacsa, R.R., Kulik, A.J., Stöckli, T., Burnham, N.A., Forró, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82(5), 944-947 (1999) · doi:10.1103/PhysRevLett.82.944
[19] Schouten, J.A.: Ricci-Calculus. Springer, Berlin Heidelberg (1954) · Zbl 0057.37803 · doi:10.1007/978-3-662-12927-2
[20] Shilo, D., Zolotoyabko, E.: Stroboscopic X-ray imaging of vibrating dislocations excited by 0.58
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.