×

On infinite order differential operators in fractional viscoelasticity. (English) Zbl 1439.74082

Summary: In this paper we discuss some general properties of viscoelastic models defined in terms of constitutive equations involving infinitely many derivatives (of integer and fractional order). In particular, we consider as a working example the recently developed Bessel models of linear viscoelasticity that, for short times, behave like fractional Maxwell bodies of order 1/2.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
35R11 Fractional partial differential equations
35Q74 PDEs in connection with mechanics of deformable solids
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)

References:

[1] T. Atanacković, M. Nedeljkov, S. Pilipović, et al., Dynamics of a fractional derivative type of a viscoelastic rod with random excitation. Fract. Calc. Appl. Anal. 18, No 5 (2015), 1232-1251; ; .; Atanacković, T.; Nedeljkov, M.; Pilipović, S., Dynamics of a fractional derivative type of a viscoelastic rod with random excitation, Fract. Calc. Appl. Anal., 18, 5, 1232-1251 (2015) · Zbl 1428.74100 · doi:10.1515/fca-2015-007
[2] Y. Cha, H. Ki, Y. Kim, A note on differential operators of infinite order. J. Math. Anal. Appl. 290 (2004), 534-541; .; Cha, Y.; Ki, H.; Kim, Y., A note on differential operators of infinite order, J. Math. Anal. Appl., 290, 534-541 (2004) · Zbl 1079.30028 · doi:10.1016/j.jmaa.2003.10.033
[3] B.D. Coleman, W. Noll, Foundations of linear viscoelasticity. Review Mod. Phys. 33, No 2 (1961), 239-249; .; Coleman, B. D.; Noll, W., Foundations of linear viscoelasticity, Review Mod. Phys., 33, 2, 239-249 (1961) · Zbl 0103.40804 · doi:10.1103/RevModPhys.33.239
[4] I. Colombaro, A. Giusti, F. Mainardi, On the propagation of transient waves in a viscoelastic Bessel medium. Z. Angew. Math. Phys. 68, No 3 (2017), Article # 62; [E-print: arXiv:1612.09489 (2016)].; Colombaro, I.; Giusti, A.; Mainardi, F., On the propagation of transient waves in a viscoelastic Bessel medium, Z. Angew. Math. Phys., 68, 3 (2017) · Zbl 1370.74028 · doi:10.1007/s00033-017-0808-6
[5] I. Colombaro, A. Giusti, F. Mainardi, A class of linear viscoelastic models based on Bessel functions. Meccanica52, No 4-5 (2017), 825-832; [E-print: arXiv:1602.04664 (2016)].; Colombaro, I.; Giusti, A.; Mainardi, F., A class of linear viscoelastic models based on Bessel functions, Meccanica, 52, 4-5, 825-832 (2017) · Zbl 1383.74019 · doi:10.1007/s11012-016-0456-5
[6] I. Colombaro, A. Giusti, F. Mainardi, A one parameter class of fractional Maxwell-like models. AIP Conference Proceedings1836 (2017), # 020003; [E-print: arXiv:1610.05958 (2016)].; Colombaro, I.; Giusti, A.; Mainardi, F., A one parameter class of fractional Maxwell-like models, AIP Conference Proceedings, 1836 (2017) · Zbl 1383.74019 · doi:10.1063/1.4981943
[7] M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelasticity. Society for Industrial and Applied Mathematics (1992).; Fabrizio, M.; Morro, A., Mathematical Problems in Linear Viscoelasticity. (1992) · Zbl 0753.73003
[8] A. Freed, K. Diethelm, Caputo derivatives in viscoelasticity: A non-linear finite-deformation theory for tissue. Fract. Calc. Appl. Anal. 10, No 3 (2007), 219-248; at .; Freed, A.; Diethelm, K., Caputo derivatives in viscoelasticity: A non-linear finite-deformation theory for tissue, Fract. Calc. Appl. Anal., 10, 3, 219-248 (2007) · Zbl 1152.26303
[9] A. Giusti, F. Mainardi, A dynamic viscoelastic analogy for fluid-filled elastic tubes. Meccanica51, No 10 (2016), 2321-2330; [E-print: arXiv:1505.06695 (2015)].; Giusti, A.; Mainardi, F., A dynamic viscoelastic analogy for fluid-filled elastic tubes, Meccanica, 51, 10, 2321-2330 (2016) · Zbl 1348.76023 · doi:10.1007/s11012-016-0376-4
[10] A. Giusti, F. Mainardi, On infinite series concerning zeros of Bessel functions of the first kind. Eur. Phys. J. Plus131, No 6 (2016), 1-7; [E-print: arXiv:1601.00563 (2016)].; Giusti, A.; Mainardi, F., On infinite series concerning zeros of Bessel functions of the first kind, Eur. Phys. J. Plus, 131, 6, 1-7 (2016) · doi:10.1140/epjp/i2016-16206-4
[11] M.E. Gurtin, E. Sternberg, On the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 11, No 1 (1962), 291-356.; Gurtin, M. E.; Sternberg, E., On the linear theory of viscoelasticity, Arch. Rational Mech. Anal., 11, 1, 291-356 (1962) · Zbl 0107.41007
[12] A. Holland, Introduction to the Theory of Entire Functions. Academic Press, London (1973).; Holland, A., Introduction to the Theory of Entire Functions. (1973) · Zbl 0278.30001
[13] V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 118, No 1 (2000), 241-259; .; Kiryakova, V., Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118, 1, 241-259 (2000) · Zbl 0966.33011 · doi:10.1016/S0377-04270000292-2
[14] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).; Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity. (2010) · Zbl 1210.26004
[15] F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal. 15, No 4 (2012), 712-717; ; [E-print: arXiv:1007.2959].; Mainardi, F., An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15, 4, 712-717 (2012) · Zbl 1314.74005 · doi:10.2478/s13540-012-0048-6
[16] F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Calc. Appl. Anal. 10, No 3 (2007), 269-308; at [E-print: arXiv:0801.4914v1].; Mainardi, F.; Gorenflo, R., Time-fractional derivatives in relaxation processes: A tutorial survey, Fract. Calc. Appl. Anal., 10, 3, 269-308 (2007) · Zbl 1157.26304
[17] F. Mainardi, G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Special Topics193, No 1 (2011), 133-160; [E-print: arXiv:1110.3400 (2011)].; Mainardi, F.; Spada, G., Creep, relaxation and viscosity properties for basic fractional models in rheology, Eur. Phys. J. Special Topics, 193, 1, 133-160 (2011) · doi:10.1140/epjst/e2011-01387-1
[18] F.C. Meral, T.J. Royston and R. Magin, Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simulat. 15, No 4 (2010), 939-945; .; Meral, F. C.; Royston, T. J.; Magin, R., Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simulat., 15, 4, 939-945 (2010) · Zbl 1221.74012 · doi:10.1016/j.cnsns.2009.05.004
[19] B.W. Peterson et al., Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiology Reviews39, No 2 (2015), 234-245; .; Peterson, B. W., Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges, FEMS Microbiology Reviews, 39, 2, 234-245 (2015) · doi:10.1093/femsre/fuu008
[20] D.P. Pioletti, L.R. Rakotomanana, Non-linear viscoelastic laws for soft biological tissues. European J. of Mechanics A-Solids19, No 5 (2000), 749-759; .; Pioletti, D. P.; Rakotomanana, L. R., Non-linear viscoelastic laws for soft biological tissues, European J. of Mechanics A-Solids, 19, 5, 749-759 (2000) · Zbl 0984.74052 · doi:10.1016/S0997-75380000202-3
[21] P. Provenzano, R. Lakes, D. Corr, et al., Application of nonlinear viscoelastic models to describe ligament behavior. Biomechan. Model. Mechanobiol. 1, No 1 (2002), 45-57; .; Provenzano, P.; Lakes, R.; Corr, D., Application of nonlinear viscoelastic models to describe ligament behavior, Biomechan. Model. Mechanobiol., 1, 1, 45-57 (2002) · doi:10.1007/s10237-002-0004-1
[22] P.C. Sikkema, Differential Operators and Differential Equations of Infinite Order with Constant Coefficients. Noordhoff, Groningen (1953).; Sikkema, P. C., Differential Operators and Differential Equations of Infinite Order with Constant Coefficients. (1953) · Zbl 0051.34402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.