×

On the time-dependent mechanics of membranes via the nonlinear finite element method. (English) Zbl 1539.74195

Summary: In this work, the problem of finite generalized and viscoelastic deformation of thin membranes with different geometries, made of incompressible hyperelastic materials, is formulated. The multiplicative decomposition of the deformation gradient tensor into elastic and viscous parts, and making use of dissipation inequality, nonlinear evolution equations for the internal variables of the models are obtained. The mechanical behavior of the dampers is assumed to be linearly viscous. Therefore, the Cauchy-like stress in the dampers is similar to that in Newtonian fluids and includes terms for the hydrostatic pressure and viscosity. The implicit and second-order accurate trapezoidal method is employed for the time integration of the evolution equations. Due to the highly nonlinear governing differential equations including the effects of geometric nonlinearity and viscoelasticity, a nonlinear finite element formulation based on isoparametric elements is developed. The accuracy and performance of the developed formulation and time-dependent solutions are verified by studying several numerical examples. The obtained results are compared with theoretical and experimental data available in the literature. The proposed formulation can appropriately predict the experimental results of viscoelastic membranes for both in-plane and out-of-plane deformations.

MSC:

74K15 Membranes
74D10 Nonlinear constitutive equations for materials with memory
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Martins, A. D.; Silvestre, N.; Bebiano, R., A new modal theory for wrinkling analysis of stretched membranes, Int. J. Mech. Sci., 175, Article 105519 pp. (2020)
[2] Rivlin, R. S.; Saunders, D. W., Large elastic deformation of isotropic materials VII. experiments on the deformation of rubber, Philos. Trans. R. Soc. London A, 243, 251-288 (1951) · Zbl 0042.42505
[3] Gent, A. N.; Rivlin, R. S., Experiments on the mechanics of rubber II: the torsion, ination and extension of a tube, Proc. Phys. Soc. B, 65, 487-501 (1952)
[4] Adkins, J. E.; Rivlin, R. S., Large elastic deformation of isotropic materials, IX. the deformation of a thin shell, Phil. Trans. Roy. Soc. A, 244, 505-531 (1952) · Zbl 0048.18204
[5] Foster, H. O., Large elastic deformation of thin rubber membranes, Int. J. Eng. Sci., 89, 403-407 (1967)
[6] Haughton, D. M.; Ogden, R. W., Bifurcation of inflated circular cylinders of elastic material under axial loading-I membrane theory for thin-walled tubes, J. Mech. Phys. Solids, 27, 179-212 (1979) · Zbl 0412.73065
[7] Tworzydlo, W. W., Analysis of large deformations of membrane shells by the generalized finite difference method, Comput. Struct., 27, 39-59 (1987) · Zbl 0624.73101
[8] Verron, E.; Marckmann, G., An axisymmetric B-spline model for the non-linear ination of rubber-like membranes, Comput. Methods Appl. Mech. Engrg., 190, 6271-6289 (2001) · Zbl 1022.74020
[9] Kanner, L. M.; Horgan, C. O., Elastic instabilities for strain-stiffening rubber-like spherical and cylindrical thin shells under inflation, Int. J. Non-Lin Mech., 42, 204-215 (2007)
[10] Tamadapu, G.; DasGupta, A., Finite ination analysis of a hyperelastic toroidal membrane of initially circular cross-section, Int. J. Non-Lin. Mech., 49, 31-39 (2013)
[11] Patil, A.; DasGupta, A., Finite inflation of an initially stretched hyperelastic circular membrane, Eur. J. Mech. A Solids, 41, 28-36 (2013) · Zbl 1406.74421
[12] Pamplona, D. C.; Weber, H. I.; Sampaio, G. R., Analytical numerical and experimental analysis of continuous indentation of a at hyperelastic circular membrane by a rigid cylindrical indenter, Int. J. Mech. Sci., 87, 18-25 (2014)
[13] Roychowdhury, S.; DasGupta, A., Inflation mechanics of a membrane reflector supported by an inflated toroidal rim, Eur. J. Mech. A Solids, 67, 34-44 (2018) · Zbl 1406.74423
[14] Wang, C. Y., Inflating and deating an underwater cylindrical membrane structure, Eur. J. Mech. A Solids, 85, Article 104127 pp. (2021) · Zbl 1476.74093
[15] Fried, I., Finite element computation of large rubber membrane deformations, Int. J. Numer. Meth. Eng., 18, 653-660 (1982) · Zbl 0482.73064
[16] Gruttmann, F.; Taylor, R. L., Theory and finite element formulation of rubberlike membrane shells using principal stretches, Int. J. Numer. Meth. Eng., 35, 1111-1126 (1992) · Zbl 0768.73074
[17] Khayat, R. E.; Derdouri, A., Ination of hyperelastic cylindrical membranes as applied to blow moulding i. axisymmetric case, Int. J. Numer. Methods Eng., 37, 3773-3791 (1994) · Zbl 0814.73060
[18] Hughes, T. J.R.; Masud, A.; Harari, I., Numerical assessment of some membrane elements with drilling degrees of freedom, Comput. Struct., 55, 297-314 (1995) · Zbl 0918.73146
[19] de Souza Neto, E. A.D.; Peric, D.; Owen, D. R.J., Finite elasticity in spatial description: linearization aspects with 3-D membrane applications, Int. J. Numer. Meth. Eng., 38, 3365-3381 (1995) · Zbl 0834.73023
[20] Kyriacou, S. K.; Schwab, C.; Humphrey, J. D., Finite element analysis of nonlinear orthotropic hyperelastic membranes, Comput. Mech., 18, 269-278 (1996) · Zbl 0864.73067
[21] Holzapfel, G. A.; Eberlein, R.; Wriggers, P.; Weizsacker, H. W., Large strain analysis of soft biological membranes: formulation and finite element analysis, Comput. Methods Appl. Mech. Engrg., 132, 45-61 (1996) · Zbl 0890.73051
[22] Holzapfel, G. A.; Eberlein, R.; Wriggers, P.; Weizsacker, H. W., A new axisymmetrical membrane element for anisotropic finite strain analysis of arteries, Commun. Numer. Meth. Eng., 12, 507-517 (1996) · Zbl 0856.73064
[23] Einstein, D. R.; Reinhall, P.; Nicosia, M.; Cochran, R. P.; Kunzelman, K., Dynamic finite element implementation of nonlinear anisotropic hyperelastic biological membranes, Comput. Methods Biomech., 6, 33-44 (2003)
[24] Chen, L.; Nguyen-Thanh, N.; Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S. P.A.; Limbert, G., Explicit finite deformation analysis of isogeometric membranes, Comput. Methods Appl. Mech. Engrg., 277, 104-130 (2014) · Zbl 1423.74525
[25] Zouari, W.; Hammadi, F.; Ayad, R., Quadrilateral membrane finite elements with rotational DOFs for the analysis of geometrically linear and nonlinear plane problems, Comput. Struct., 173, 139-149 (2016)
[26] Karttunen, A. T.; von Hertzen, R.; Reddy, J. N.; Romanoff, J., Exact elasticity-based finite element for circular plates, Comput. Struct., 182, 219-226 (2017)
[27] Nguyen, T. N.; Hien, T. D.; Nguyen-Thoi, T. H.; Lee, J., A unified adaptive approach for membrane structures: From finding and large deflection isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 367, Article 113239 pp. (2020) · Zbl 1506.74178
[28] Kutlu, A.; Dorduncu, M.; Rabczuk, M., A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates, Compos. Struct., 267, Article 113886 pp. (2021)
[29] Kumar, N.; Vishwakarma, U.; A. DasGupta, A., On the mechanics of inflated hyperelastic membrane-membrane contact problem, Int. J. Non-Linear Mech., 137, Article 103805 pp. (2021)
[30] Arslan, K.; Gunes, R.; Apalak, M. K.; Reddy, J. N., Evaluation of geometrically nonlinear and elastoplastic behavior of functionally graded plates under mechanical loading-unloading, Mech. Adv. Mater. Struct., 29, 1587-1600 (2022)
[31] Areias, P.; Silvestre, N.; Rabczuk, T., Wrinkling of finite-strain membranes with mixed solid-shell elements, Eng. Comput., 1-12 (2022)
[32] Selvadurai, A. P.S., Mechanics of pressurized planar hyperelastic membranes, Phil. Trans. R. Soc. A, 380, Article 20210319 pp. (2022)
[33] Sirotti S. Pelliciari, M.; Aloisio, A.; Tarantino, A. M., Analytical pressure-deflection curves for the inflation of pre-stretched circular membranes, Eur. J. Mech. A Solids, 97, Article 104831 pp. (2023) · Zbl 1504.74051
[34] Firouzi, N.; Zur, K. K., On the generalized nonlinear mechanics of compressible, incompressible, isotropic, and anisotropic hyperelastic membranes, Int. J. Solids Struct., Article 112088 pp. (2022)
[35] Dominique, P. P.; Rakotomanana, L. R., Non-linear viscoelastic laws for soft biological tissues, Eur. J. Mech. A Solids, 19, 749-759 (2000) · Zbl 0984.74052
[36] Christensen, R. M., Theory of Viscoelasticity, an Introduction (1982), Academic Press: Academic Press NY
[37] Pipkin, A. C.; Rogers, T. G., A non-linear integral representation for viscoelastic behaviour, J. Mech. Phys. Solids, 16, 59-72 (1968) · Zbl 0158.43601
[38] Christensen, R. M., A nonlinear theory of viscoelasticity for application to elastomers, J. Appl. Mech., 47, 762-768 (1980) · Zbl 0456.73021
[39] Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues (1981), Springer
[40] Simo, J. C., On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects, Comput. Methods Appl. Mech. Engrg., 60, 153-173 (1987) · Zbl 0588.73082
[41] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer · Zbl 0934.74003
[42] Le Tallec, P.; Rahier, C.; Kaiss, A., Three-dimensional incompressible viscoelasticity in large strains: Formulation and numerical approximation, Comput. Methods Appl. Mech. Engrg., 109, 233-258 (1993) · Zbl 0845.73029
[43] Reese, S.; Govindjee, S., A theory of finite viscoelasticity and numerical aspects, Int. J. Solids Struct., 35, 3455-3482 (1998) · Zbl 0918.73028
[44] Bonet, J., Large strain viscoelastic constitutive models, In.T J. Solids Struct., 38, 2953-2968 (2001) · Zbl 1058.74027
[45] Karamanou, M.; Warby, M. K.; Whiteman, J. R., Computational modelling of thermoforming processes in the case of finite viscoelastic materials, Comput. Methods Appl. Mech. Engrg., 195, 5220-5238 (2006) · Zbl 1127.74009
[46] Amabili, M., Nonlinear Mechanics of Shells and Plates: Composite, Soft and Biological Materials (2018), Cambridge University Press: Cambridge University Press New York, USA · Zbl 1431.74002
[47] Berjamin, H.; Destrade, M.; Parnell, W. J., On the thermodynamic consistency of Quasi-linear viscoelastic models for soft solids, Mech. Res. Commun., 111, Article 103648 pp. (2021)
[48] Amabili, M.; Balasubramanian, P.; Breslavsky, I.; Ferrari, G.; Tubaldi, E., Viscoelastic characterization of woven dacron for aortic grafts by using direction-dependent quasi-linear viscoelasticity, J. Mech. Behav. Biomed. Mater., 82, 282-290 (2018)
[49] Amabili, M.; Balasubramanian, P.; Breslavsky, I., Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas, J. Mech. Behav. Biomed. Mater., 99, 186-197 (2019)
[50] Wineman, A., Large axisymmetric ination of a nonlinear viscoelastic membrane by lateral pressure, J. Rheol., 20, 203-225 (1976) · Zbl 0388.73066
[51] Wineman, A., On axisymmetric deformations of nonlinear viscoelastic membranes, J. Non- Newton. Fluid, 4, 249-260 (1978) · Zbl 0381.73073
[52] Wineman, A., Nonlinear viscoelastic membranes, Comput. Math. Appl., 53, 168-181 (2007) · Zbl 1129.74025
[53] Feng, W. W., Viscoelastic behavior of elastomeric membranes, J. Appl. Mech., 59, 29-34 (1992)
[54] Kroon, M., A constitutive framework for modelling thin incompressible viscoelastic materials under plane stress in the finite strain regime, Mech. Time-Depend. Mater., 15, 389-406 (2011)
[55] Firouzi, N., Mechanics of nonlinear visco-hyperelastic-hysteresis membranes, Int. J. Non-Linear Mech., 147, Article 104231 pp. (2022)
[56] Itskov, M., Tensor Algebra and Tensor Analysis for Engineers (2019), Springer · Zbl 1397.00004
[57] Holzapfel, G. A., Nonlinear solid mechanics, (A Continuum Approach (2000), Wiley) · Zbl 0980.74001
[58] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1983), Prentice-Hall: Prentice-Hall NJ · Zbl 0545.73031
[59] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2008), Wiley · Zbl 1167.65041
[60] Reddy, J. N., An Introduction to Nonlinear Finite Element Analysis (2015), Oxford University Press
[61] Jridi, N.; Arfaoui, M.; Hamdi, A.; Salvia, A.; Barielle, O.; Ichchou, M.; Abdallah, J. B., Separable finite viscoelasticity: integral-based models vs experiments, Mech. Time-Depend. Mater., 23, 295-325 (2019)
[62] Fosdick, R.; Yu, J.-H., Thermodynamics stability and non-linear oscillations of viscoelastic solids-II. history type solids, Int. J. Non-Linear Mech., 33, 165-188 (1998) · Zbl 0891.73026
[63] Bernstein, B.; Kearsley, E.; Zapas, L., A study of stress relaxation with finite strain, Trans. Soc. Rheol., 7, 391-410 (1963) · Zbl 0139.42701
[64] Haupt, P.; Sedlan, K., Viscoplasticity of elastomeric materials experimental facts and constitutive modeling, Arch. Appl. Mech., 71, 89-109 (2001) · Zbl 1007.74027
[65] Charrier, J. M.; Shrivastava, S.; Wu, R., Free and constrained inflation of elastic membranes in relation to thermoforming non-axisymmetric problems, J. Strain Anal., 24, 55-73 (1989)
[66] Verron, E.; Marckmann, G.; Peseux, B., Dynamic ination of non-linear elastic and viscoelastic rubber-like membranes, Int. J. Numer. Meth. Eng., 50, 1233-1251 (2001) · Zbl 1047.74039
[67] Kawabata, S.; Kawai, H., Strain energy density functions of rubber vulcanizates from biaxial extension, Adv. Polym. Sci., 24, 89-124 (1977)
[68] Ogden, R. W., Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. A, 326, 565-584 (1972) · Zbl 0257.73034
[69] Wriggers, P.; Taylor, R. L., A fully non-linear axisymmetrical membrane element for rubberlike materials, Eng. Comput., 7, 303-310 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.