×

Factorization of Hermite subdivision operators from polynomial over-reproduction. (English) Zbl 1490.65024

Summary: We study the case of Hermite subdivision operators satisfying a spectral condition of order greater than their size. We show that this can be characterized by operator factorizations involving Taylor operators and difference factorizations of a rank one vector scheme. Giving explicit expressions for the factorization operators, we put into evidence that the factorization only depends on the order of the spectral condition but not on the polynomials that define it. We further show that the derivation of these operators is based on an interplay between Stirling numbers and \(p\)-Cauchy numbers (or generalized Gregory coefficients).

MSC:

65D15 Algorithms for approximation of functions
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
11B73 Bell and Stirling numbers
Full Text: DOI

References:

[1] Blagouchine, I., Two series expansions for the logarithm of the gamma function involving stirling numbers and containing only rational coefficients for certain arguments related to \(\pi^{- 1}\), J. Math. Anal. Appl., 442, 2, 404-434 (2016) · Zbl 1339.33003
[2] Blagouchine, I., A note on some recent results for the Bernoulli numbers of the second kind, J. Integer Seq., 20, 3, 1-7 (2017) · Zbl 1381.11017
[3] Blagouchine, I., Three notes on Ser’s and Hasse’s representations for the zeta-functions, Integers, 18A, A3, 1-45 (2018) · Zbl 1453.11106
[4] Cavaretta, A. S.; Micchelli, C. A.; Dahmen, W., Stationary subdivision, Mem. Amer. Math. Soc., 453 (1991) · Zbl 0741.41009
[5] Charina, M.; Conti, C.; Sauer, T., Regularity of multivariate vector subdivision schemes, Numer. Algorithms, 39, 1-3, 97-113 (2005) · Zbl 1071.65019
[6] Conti, C.; Cotronei, M.; Sauer, T., Factorization of Hermite subdivision operators preserving exponentials and polynomials, Adv. Comput. Math., 42, 5, 1055-1079 (2016) · Zbl 1358.65015
[7] Conti, C.; Merrien, J.-L.; Romani, L., Dual Hermite subdivision schemes of de Rham-type, BIT, 54, 955-977 (2014) · Zbl 1335.65022
[8] Cotronei, M.; Moosmüller, C.; Sauer, T.; Sissouno, N., Level-dependent interpolatory Hermite subdivision schemes and wavelets, Constr. Approx., 50, 2, 341-366 (2019) · Zbl 07103916
[9] Dubuc, S.; Merrien, J.-L., Hermite subdivision schemes and Taylor polynomials, Constr. Approx., 29, 2, 219-245 (2009) · Zbl 1180.65024
[10] Dyn, N., Subdivision schemes in computer-aided geometric design, (Advances in Numerical Analysis, vol. 2 (1992), Oxford University Press), 36-104 · Zbl 0760.65012
[11] Dyn, N.; Levin, D., Analysis of Hermite-type subdivision schemes, (Chui, C.; Schumaker, L., Approximation Theory VIII. Vol 2: Wavelets and Multilevel Approximation (1995), World Scientific), 117-124 · Zbl 0927.65034
[12] Graham, R.; Knuth, D.; Patashnik, O., Concrete Mathematics: A Foundation for Computer Science (1994), Addison-Wesley Longman: Addison-Wesley Longman Boston · Zbl 0836.00001
[13] Han, B., Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets, J. Approx. Theory, 110, 18-53 (2001) · Zbl 0986.42020
[14] Han, B., Vector cascade algorithms and refinable function vectors in Sobolev spaces, J. Approx. Theory, 124, 1, 44-88 (2003) · Zbl 1028.42019
[15] Han, B., Analysis and convergence of Hermite subdivision schemes (2020), arXiv:2009.05020
[16] Han, B.; Yu, T.; Xue, Y., Noninterpolatory Hermite subdivision schemes, Math. Comp., 74, 251, 1345-1367 (2005) · Zbl 1066.42024
[17] Jeong, B.; Yoon, J., Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials, J. Comput. Appl. Math., 349, 452-469 (2019) · Zbl 1503.65032
[18] Kowalenko, V., Properties and applications of the reciprocal logarithm numbers, Acta Appl. Math., 109, 2, 413-437 (2010) · Zbl 1208.11032
[19] Merlini, D.; Sprugnoli, R.; Verri, M., The Cauchy numbers, Discrete Math., 306, 16, 1906-1920 (2006) · Zbl 1098.05008
[20] Merrien, J.-L., A family of Hermite interpolants by bisection algorithms, Numer. Algorithms, 2, 2, 187-200 (1992) · Zbl 0754.65011
[21] Merrien, J.-L.; Sauer, T., From Hermite to stationary subdivision schemes in one and several variables, Adv. Comput. Math., 36, 4, 547-579 (2012) · Zbl 1251.41014
[22] Merrien, J.-L.; Sauer, T., Extended Hermite subdivision schemes, J. Comput. Appl. Math., 317, 343-361 (2017) · Zbl 1357.41030
[23] Merrien, J.-L.; Sauer, T., Generalized Taylor operators and polynomial chains for Hermite subdivision schemes, Numer. Math., 142, 1, 167-203 (2019) · Zbl 1530.65023
[24] Micchelli, C. A.; Sauer, T., Regularity of multiwavelets, Adv. Comput. Math., 7, 4, 455-545 (1997) · Zbl 0902.65095
[25] Micchelli, C. A.; Sauer, T., On vector subdivision, Math. Z., 229, 621-674 (1998) · Zbl 0930.65007
[26] Moosmüller, C., \( C^1\) Analysis of Hermite subdivision schemes on manifolds, SIAM J. Numer. Anal., 54, 5, 3003-3031 (2016) · Zbl 1350.65015
[27] Moosmüller, C., Hermite subdivision on manifolds via parallel transport, Adv. Comput. Math., 43, 5, 1059-1074 (2017) · Zbl 1377.41008
[28] Moosmüller, C.; Dyn, N., Increasing the smoothness of vector and Hermite subdivision schemes, IMA J. Numer. Anal., 39, 2, 579-606 (2019) · Zbl 1464.65019
[29] Moosmüller, C.; Hüning, S.; Conti, C., Stirling numbers and gregory coefficients for the factorization of Hermite subdivision operators, IMA J. Numer. Anal. (2020)
[30] Phillips, G. M., Gregory’s method for numerical integration, Am. Math. Monthly, 79, 3, 270-274 (1972) · Zbl 0227.41011
[31] Rahmani, M., On \(p\)-Cauchy numbers, Filomat, 30, 10, 2731-2742 (2016) · Zbl 1459.11054
[32] Salzer, H. E., XXXVII. Table of coefficients for repeated integration with differences, Lond. Edinb. Dublin Philos. Mag. J. Sci., 38, 280, 331-338 (1947) · Zbl 0030.06001
[33] Sauer, T., Stationary vector subdivision – quotient ideals, differences and approximation power, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 96, 2, 257-277 (2002) · Zbl 1057.42029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.