×

The noncentral version of the Whitney numbers: a comprehensive study. (English) Zbl 1425.11047

Summary: This paper is a comprehensive study of a certain generalization of Whitney-type and Stirling-type numbers which unifies the classical Whitney numbers, the translated Whitney numbers, the classical Stirling numbers, and the noncentral Stirling (or \(r\)-Stirling) numbers. Several identities, applications, and occurrences are also presented.

MSC:

11B73 Bell and Stirling numbers
05B35 Combinatorial aspects of matroids and geometric lattices

Online Encyclopedia of Integer Sequences:

Least positive sequence with Hankel transform {1,1,1,1,1,...}.

References:

[1] Dowling, T. A., A class of geometric lattices based on finite groups, Journal of Combinatorial Theory. Series B, 15, 61-86 (1973) · Zbl 0247.05019 · doi:10.1016/s0095-8956(73)80007-3
[2] Benoumhani, M., On Whitney numbers of Dowling lattices, Discrete Mathematics, 159, 1-3, 13-33 (1996) · Zbl 0861.05004 · doi:10.1016/0012-365x(95)00095-e
[3] Benoumhani, M., On some numbers related to Whitney numbers of Dowling lattices, Advances in Applied Mathematics, 19, 1, 106-116 (1997) · Zbl 0876.05001 · doi:10.1006/aama.1997.0529
[4] Benoumhani, M., Log-concavity of Whitney numbers of Dowling lattices, Advances in Applied Mathematics, 22, 2, 186-189 (1999) · Zbl 0918.05003 · doi:10.1006/aama.1998.0621
[5] Belbachir, H.; Bousbaa, I. E., Translated Whitney and \(r\)-Whitney numbers: a combinatorial approach, Journal of Integer Sequences, 16, article 13.8.6 (2013) · Zbl 1292.05050
[6] Mangontarum, M. M.; Macodi-Ringia, A. P.; Abdulcarim, N. S., The translated Dowling polynomials and numbers, International Scholarly Research Notices, 2014 (2014) · Zbl 1460.05014 · doi:10.1155/2014/678408
[7] Mangontarum, M. M.; Dibagulun, A., On the translated Whitney numbers and their combinatorial properties, British Journal of Applied Science and Technology, 11, 5, 1-15 (2015) · doi:10.9734/bjast/2015/19973
[8] Callan, D., Cesàro’s Integral Formula for the Bell Numbers (Corrected) (2005)
[9] Mező, I., A new formula for the Bernoulli polynomials, Results in Mathematics, 58, 3-4, 329-335 (2010) · Zbl 1237.11010 · doi:10.1007/s00025-010-0039-z
[10] Cheon, G.-S.; Jung, J.-H., r-Whitney numbers of Dowling lattices, Discrete Mathematics, 312, 15, 2337-2348 (2012) · Zbl 1246.05009 · doi:10.1016/j.disc.2012.04.001
[11] Mező, I.; Ramirez, J. L., The linear algebra of the \(r\)-Whitney matices, Integral Transforms and Special Functions, 26, 3, 213-225 (2015) · Zbl 1371.11062 · doi:10.1080/10652469.2014.984180
[12] Koutras, M., Non-central Stirling numbers and some applications, Discrete Mathematics, 42, 1, 73-89 (1982) · Zbl 0506.10009 · doi:10.1016/0012-365x(82)90056-5
[13] Broder, A. Z., The \(r\)-Stirling numbers, Discrete Mathematics, 49, 3, 241-259 (1984) · Zbl 0535.05006 · doi:10.1016/0012-365x(84)90161-4
[14] Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics (1989), Reading, Mass, USA: Addison-Wesley, Reading, Mass, USA · Zbl 0668.00003
[15] Pan, J., Matrix decomposition of the unified generalized Stirling numbers and inversion of the generalized factorial matrices, Journal of Integer Sequences, 15, article 12.6.6 (2012) · Zbl 1291.11055
[16] Hsu, L. C.; Shiue, P. J., A unified approach to generalized Stirling numbers, Advances in Applied Mathematics, 20, 3, 366-384 (1998) · Zbl 0913.05006 · doi:10.1006/aama.1998.0586
[17] Rahmani, M., Some results on Whitney numbers of Dowling lattices, Arab Journal of Mathematical Sciences, 20, 1, 11-27 (2014) · Zbl 1377.11032 · doi:10.1016/j.ajmsc.2013.02.002
[18] Tanny, S., On some numbers related to the Bell numbers, Canadian Mathematical Bulletin, 17, 733-738 (1975) · Zbl 0304.10007 · doi:10.4153/cmb-1974-132-8
[19] Rota, G.-C., The number of partitions of a set, The American Mathematical Monthly, 71, 498-504 (1964) · Zbl 0121.01803 · doi:10.2307/2312585
[20] Chen, K.-W., Identities from the binomial transform, Journal of Number Theory, 124, 1, 142-150 (2007) · Zbl 1120.05007 · doi:10.1016/j.jnt.2006.07.015
[21] Sloane, N. J., Least positive sequence with Hankel transform \(\left``\{1,1, 1,1, 1, \ldots\right``\}\)
[22] Layman, J. W., The Hankel transform and some of its properties, Journal of Integer Sequences, 4, 1 (2001) · Zbl 0978.15022
[23] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), New York, NY, USA: Dover, New York, NY, USA · Zbl 0543.33001
[24] Mező, I., The \(r\)-Bell numbers, Journal of Integer Sequences, 14, 1 (2011) · Zbl 1205.05017
[25] Corcino, R. B.; Corcino, C. B., On generalized Bell polynomials, Discrete Dynamics in Nature and Society, 2011 (2011) · Zbl 1272.11039 · doi:10.1155/2011/623456
[26] Comtet, L., Advanced Combinatorics (1974), Dordrecht, Netherlands: D. Reidel, Dordrecht, Netherlands · Zbl 0283.05001
[27] Cesàro, M., Sur une équation aux différences melées, Nouvelles Annales de Mathématiques, 4, 36-40 (1883)
[28] Stirling, J., Methodus Differentialissme Tractus de Summatione et Interpolatione Serierum Infinitarum (1730), London, UK
[29] Privault, N., Generalized Bell polynomials and the combinatorics of Poisson central moments, Electronic Journal of Combinatorics, 18, 1, 1-10 (2011) · Zbl 1215.11017
[30] Mangontarum, M. M.; Corcino, R. B., The generalized factorial moments in terms of a Poisson random variable, GSTF Journal of Mathematics, Statistics and Operations Research, 2, 1, 64-67 (2013)
[31] Mező, I., On the maximum of \(r\)-Stirling numbers, Advances in Applied Mathematics, 41, 3, 293-306 (2008) · Zbl 1165.11023 · doi:10.1016/j.aam.2007.11.002
[32] Corcino, R. B.; Corcino, C. B., On the maximum of generalized Stirling numbers, Utilitas Mathematica, 86, 241-256 (2011) · Zbl 1294.05013
[33] Corcino, R. B.; Corcino, C. B.; Aranas, P. B., The peak of noncentral Stirling numbers of the first kind, International Journal of Mathematics and Mathematical Sciences, 2015 (2015) · Zbl 1393.11022 · doi:10.1155/2015/982812
[34] Corcino, C. B.; Corcino, R. B., Asymptotic estimates for second kind generalized stirling numbers, Journal of Applied Mathematics, 2013 (2013) · Zbl 1283.11045 · doi:10.1155/2013/918513
[35] Corcino, C. B.; Corcino, R. B., An asymptotic formula for r-Bell numbers with real arguments, ISRN Discrete Mathematics, 2013 (2013) · Zbl 1283.11045 · doi:10.1155/2013/274697
[36] Corcino, C. B.; Corcino, R. B.; Acala, N., Asymptotic estimates for r-Whitney numbers of the second kind, Journal of Applied Mathematics, 2014 (2014) · Zbl 1406.11020 · doi:10.1155/2014/354053
[37] Corcino, C. B.; Corcino, R. B.; Gasparin, R. J., Equivalent asymptotic formulas of second kind r-Whitney numbers, Integral Transforms and Special Functions, 26, 3, 192-202 (2015) · Zbl 1371.11061 · doi:10.1080/10652469.2014.979410
[38] Corcino, C. B.; Corcino, R. B.; Ontolan, J. M.; Perez-Fernandez, C. M.; Cantallopez, E. R., The Hankel transform of \(q\)-noncentral Bell numbers, International Journal of Mathematics and Mathematical Sciences, 2015 (2015) · Zbl 1393.11021 · doi:10.1155/2015/417327
[39] de Médicis, A.; Leroux, P., Generalized Stirling numbers, convolution formulae and p; \(q\)-analogues, Canadian Journal of Mathematics, 47, 3, 474-499 (1995) · Zbl 0831.05005 · doi:10.4153/cjm-1995-027-x
[40] El-Desouky, B. S., The multiparameter noncentral Stirling numbers, The Fibonacci Quarterly, 32, 218-225 (1994) · Zbl 0802.05003
[41] Corcino, R. B.; Mangontarum, M. M., On multiparameter \(q\)-noncentral Stirling and Bell numbers, Ars Combinatoria, 118, 201-220 (2015) · Zbl 1349.11047
[42] Mangontarum, M. M.; Katriel, J., On \(q\)-boson operators and \(q\)-analogues of the \(r\)-Whitney and \(r\)-dowling numbers, Journal of Integer Sequences, 18, article 15.9.8 (2015) · Zbl 1402.11031
[43] Arik, M.; Coon, D. D., Hilbert spaces of analytic functions and generalized coherent states, Journal of Mathematical Physics, 17, 4, 524-527 (1976) · Zbl 0941.81549 · doi:10.1063/1.522937
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.