×

Some identities on truncated polynomials associated with degenerate Bell polynomials. (English) Zbl 1477.11042

Summary: The aim of this paper is to introduce truncated degenerate Bell polynomials and numbers and to investigate some of their properties. In more detail, we obtain explicit expressions, identities involving other special polynomials, integral representations, a Dobinski-like formula and expressions of the generating function in terms of differential operators and the linear incomplete gamma function. In addition, we introduce truncated degenerate modified Bell polynomials and numbers and obtain similar results for those polynomials. As an application of our results, we show that the truncated degenerate Bell numbers can be expressed as a finite sum involving moments of a beta random variable with certain parameters.

MSC:

11B73 Bell and Stirling numbers
05A19 Combinatorial identities, bijective combinatorics

References:

[1] Brillhart, J., Mathematical Notes: Note on the Single Variable Bell Polynomials, Amer. Math. Monthly, 74, 6 (1967) · Zbl 0152.02304 · doi:10.2307/2314261
[2] Carlitz, L., Single Variable Bell Polynomials, Collect. Math., 14, 13-25 (1962) · Zbl 0109.02906
[3] Carlitz, L., Arithmetic Properties of the Bell Polynomials, J. Math. Anal. Appl., 15, 33-52 (1966) · Zbl 0148.01902 · doi:10.1016/0022-247X(66)90135-1
[4] Charalambides, Ch. A., Minimum Variance Unbiased Estimation for the Zero Class Truncated Bivariate Poisson and Logarithmic Series Distributions, Metrika, 31, 2, 115-123 (1984) · Zbl 0529.62027 · doi:10.1007/BF01915193
[5] Cohen, A.; Clifford, Jr., Estimation in the Truncated Poisson Distribution When Zeros and Some Ones Are Missing, J. Amer. Statist. Assoc., 55, 342-348 (1960) · Zbl 0093.32203 · doi:10.1080/01621459.1960.10482069
[6] Comtet, L., Advanced Combinatorics. The Art of Finite and Infinite Expansions (1974), Dordrecht: Revised and enlarged edition. D. Reidel Publishing Co., Dordrecht · Zbl 0283.05001
[7] Dattoli, G.; Cesarano, C.; Sacchetti, D., A Note on Truncated Polynomials, Appl. Math. Comput., 134, 2-3, 595-605 (2003) · Zbl 1024.33002
[8] Guettai, G.; Laissaoui, D.; Rahmani, M.; Sebaoui, M., On Poly-Bell Numbers and Polynomials, arXiv:1812.04136, 0, 0 (0000) · Zbl 1463.05020
[9] Kim, H. K.; Baek, H.; Lee, D. S., A Note on Truncated Degenerate Exponential Polynomials, Research Gate(preprint: December 2020), https://www.researchgate.net/publication/346581812, 0, 0 (0000)
[10] Kim, D. S.; Kim, T., A Note on a New Type of Degenerate Bernoulli Numbers, Russ. J. Math. Phys., 27, 2, 227-235 (2020) · Zbl 1468.11072 · doi:10.1134/S1061920820020090
[11] Kim, D. S.; Kim, T., A Note on Polyexponential and Unipoly Functions, Russ. J. Math. Phys., 26, 1, 40-49 (2019) · Zbl 1470.33002 · doi:10.1134/S1061920819010047
[12] Kim, D. S.; Kim, T., An Umbral Calculus Approach to Bernoulli-Padé Polynomials, Mathematical Analysis, Approximation Theory and Their Applications, Springer Optim. Appl., 111, 363-382 (2016) · Zbl 1370.41026
[13] Kim, T., A Note on Degenerate Stirling Polynomials of the Second Kind, Proc. Jangjeon Math. Soc., 20, 3, 319-331 (2017) · Zbl 1377.11027
[14] Kim, T.; Kim, D. S., Degenerate Zero-Truncated Poisson Random Variables, arXiv:1911.13227, 0, 0 (0000)
[15] Kim, T.; Kim, D. S., Degenerate Polyexponential Functions and Degenerate Bell Polynomials, J. Math. Anal. Appl., 487, 2, 0 (2020) · Zbl 1507.11020
[16] Kim, T.; Kim, D. S., Note on the Degenerate Gamma Function, Russ. J. Math. Phys., 27, 3, 352-358 (2020) · Zbl 1473.33001 · doi:10.1134/S1061920820030061
[17] Kim, T.; Kim, D. S., Degenerate Laplace Transform and Degenerate Gamma Function, Russ. J. Math. Phys., 24, 2, 241-248 (2017) · Zbl 1377.44001 · doi:10.1134/S1061920817020091
[18] Kim, T.; Kim, D. S.; Dolgy, D. V., On Partially Degenerate Bell Numbers and Polynomials, Proc. Jangjeon Math. Soc., 20, 3, 337-345 (2017) · Zbl 1391.11043
[19] Kim, T.; Kim, D. S.; Jang, L.-C.; Kwon, H.-I., Extended Degenerate Stirling Numbers of the Second Kind and Extended Degenerate Bell Polynomials, Util. Math., 106, 11-21 (2018) · Zbl 1425.11046
[20] Roman, S., The Umbral Calculus, Pure and Applied Mathematics, 0, 0 (1984) · Zbl 0931.41017
[21] Ross, S. M., Introduction to Probability Models (2019), London: Twelfth edition of [MR0328973], Academic Press, London · Zbl 1408.60002
[22] Springer, M. D.; Thompson, W. E., The Distribution of Products of Beta, Gamma and Gaussian Random Variables, SIAM J. Appl. Math., 18, 721-737 (1970) · Zbl 0198.23703 · doi:10.1137/0118065
[23] Srivastava, H. M.; Araci, S.; Khan, W. A.; Acikgoz, M., A Note on the Truncated-Exponential Based Apostol-Type Polynomials, Symmetry, 11, 4, 0 (2019) · Zbl 1425.11044
[24] A Course of Modern Analysis, An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, Fourth edition, Reprinted Cambridge University Press, New York, 1962. · Zbl 0105.26901
[25] Yasmin, G.; Khan, S.; Ahmad, N., Operational Methods and Truncated Exponential-Based Mittag-Leffler Polynomials, Mediterr. J. Math., 13, 1555-1569 (2016) · Zbl 1347.33044 · doi:10.1007/s00009-015-0610-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.