×

Generalized Stirling numbers and sums of powers of arithmetic progressions. (English) Zbl 1475.97002

Summary: In this paper, we first focus on the sum of powers of the first \(n\) positive odd integers, \(T_k(n) = 1^k + 3^k + 5^k + \cdots +(2 n - 1)^k\), and derive in an elementary way a polynomial formula for \(T_k(n)\) in terms of a specific type of generalized Stirling numbers. Then we consider the sum of powers of an arbitrary arithmetic progression and obtain the corresponding polynomial formula in terms of the so-called \(r\)-Whitney numbers of the second kind. This latter formula produces, in particular, the well-known formula for the sum of powers of the first \(n\) natural numbers in terms of the usual Stirling numbers of the second kind. Furthermore, we provide several other alternative formulas for evaluating the sums of powers of arithmetic progressions.

MSC:

97F60 Number theory (educational aspects)
11B73 Bell and Stirling numbers
11B68 Bernoulli and Euler numbers and polynomials

Software:

OEIS
Full Text: DOI

References:

[1] Apostol, T. M. (2008). A primer on Bernoulli numbers and polynomials. Mathematics Magazine, 81, 178-190. doi:10.1080/0025570X.2008.11953547 · Zbl 1223.11022
[2] Bagno, E., Biagioli, R., & Garber, D. (2019). Some identities involving second kind Stirling numbers of types \(B\) and \(D\). The Electronic Journal of Combinatorics, 26(3), 1-20. · Zbl 1416.05037 · doi:10.37236/8703
[3] Bala, P. (2015). A 3-parameter family of generalized Stirling numbers. Retrieved from https://oeis.org/A143395/a143395.pdf
[4] Bazsó, A., Pintér, Á., & Srivastava, H. M. (2012). A refinement of Faulhaber’s theorem concerning sums of powers of natural numbers. Applied Mathematics Letters, 25, 486-489. doi:10.1016/j.aml.2011.09.042 · Zbl 1285.11034 · doi:10.1016/j.aml.2011.09.042
[5] Bazsó, A., & Mezö, I. (2015). On the coefficients of power sums of arithmetic progressions. Journal of Number Theory, 153, 117-123. doi:10.1016/j.jnt.2015.01.019 · Zbl 1365.11020 · doi:10.1016/j.jnt.2015.01.019
[6] Bounebirat, F., Laissaoui, D., & Rahmani, M. (2017). Several explicit formulae of sums and hyper-sums of powers of integers. Retrieved from http://arxiv.org/abs/1712.07208v1 · Zbl 1399.11062
[7] Boyadzhiev, K. N. (2012). Close encounters with the Stirling numbers of the second kind. Mathematics Magazine, 85, 252-266. doi:10.4169/math.mag.85.4.252 · Zbl 1260.11016
[8] Broder, A. Z. (1984). The \(r\)-Stirling numbers. Discrete Mathematics, 49, 241-259. doi:10.1016/0012-365X(84)90161-4 · Zbl 0535.05006 · doi:10.1016/0012-365X(84)90161-4
[9] Cereceda, J. L. (2017). Polynomial interpolation and sums of powers of integers. International Journal of Mathematical Education in Science and Technology, 48, 267-277. doi:10.1080/0020739X.2016.1213434 · Zbl 1396.97027
[10] Cereceda, J. L. (2019). Power sums of arithmetic progressions and Bernoulli polynomials. International Journal of Contemporary Mathematical Sciences, 14, 187-200. doi:10.12988/ijcms.2019.9716 · doi:10.12988/ijcms.2019.9716
[11] Chapman, R. (2008). Evaluating ##img## ##img####img##\( \sum_{n = 1}^N(a + n d)^p\) again. The Mathematical Gazette, 92, 92-94. doi:10.1017/S0025557200182622 · doi:10.1017/S0025557200182622
[12] Cheon, G. S., & Jung, J. H. (2012). \(r\)-Whitney numbers of Dowling lattices. Discrete Mathematics, 312, 2337-2348. doi:10.1016/j.disc.2012.04.001 · Zbl 1246.05009 · doi:10.1016/j.disc.2012.04.001
[13] Deeba, E. Y., & Rodriguez, D. M. (1990). Bernoulli numbers and trigonometric functions. International Journal of Mathematical Education in Science and Technology, 21, 275-282. doi:10.1080/0020739900210214
[14] El-Desouky, B. S., Cakić, N. P., & Shiha, F. A. (2017). New family of Whitney numbers. Filomat, 31, 309-320. doi:10.2298/FIL1702309E · Zbl 1488.05023 · doi:10.2298/FIL1702309E
[15] Fengming, D., Kin, H. W., & Yeong, L. T. (2013). A family of identities via arbitrary polynomials. The College Mathematics Journal, 44, 43-47. doi:10.4169/college.math.j.44.1.043 · Zbl 1274.97044
[16] Gauthier, N. (2006). Sum of the \(m\) th powers of \(n\) successive terms of an arithmetic sequence: ##img## ##img####img##\(b^m +(a + b)^m +(2 a + b)^m + \cdots +((n - 1) a + b)^m\). International Journal of Mathematical Education in Science and Technology, 37, 207-215. doi:10.1080/00207390500186149
[17] Griffiths, M. (2002). Sums of powers of the terms in any finite arithmetic progression. The Mathematical Gazette, 86, 269-271. doi:10.2307/3621855 · doi:10.2307/3621855
[18] Griffiths, M. (2009). More on sums of powers of an arithmetic progression. The Mathematical Gazette, 93, 277-279. doi:10.1017/S0025557200184803 doi: 10.1017/S0025557200185286 · doi:10.1017/S0025557200185286
[19] Guo, B. N., Mezö, I., & Qi, F. (2016). An explicit formula for Bernoulli polynomials in terms of \(r\)-Stirling numbers of the second kind. Rocky Mountain Journal of Mathematics, 46, 1919-1923. doi:10.1216/RMJ-2016-46-6-1919 · Zbl 1371.11045 · doi:10.1216/RMJ-2016-46-6-1919
[20] Guo, S. L., & Qi, F. (1999). Recursion formulae for ##img## ##img####img##\( \sum_{m = 1}^n m^k\). Zeitschrift für Analysis und ihre Anwendungen, 18, 1123-1130. doi:10.4171/ZAA/933 · Zbl 0939.11008 · doi:10.4171/ZAA/933
[21] Hirschhorn, M. D. (2006). Evaluating ##img## ##img####img##\( \sum_{n = 1}^N(a + n d)^p\). The Mathematical Gazette, 90, 114-116. doi:10.1017/S0025557200179197 · doi:10.1017/S0025557200179197
[22] Howard, F. T. (1996). Sums of powers of integers via generating functions. Fibonacci Quarterly, 34, 244-256. · Zbl 0859.11016
[23] Inaba, Y. (2004). A note on the sums ##img## ##img####img##\(1^k +(1 + d)^k +(1 + 2 d)^k + \ldots +(1 + n d)^k\). International Journal of Mathematical Education in Science and Technology, 35, 440-445. doi:10.1080/0020739310001658500
[24] Kannappan, P. L., & Zhang, W. (2002). Finding sum of powers on arithmetic progressions with application of Cauchy’s equation. Results in Mathematics, 42, 277-288. doi:10.1007/BF03322855 · Zbl 1053.11014 · doi:10.1007/BF03322855
[25] Kotiah, T. C. T. (1993). Sums of powers of integers - A review. International Journal of Mathematical Education in Science and Technology, 24, 863-874. doi:10.1080/0020739930240611 · Zbl 0806.11015
[26] Krishnapriyan, H. K. (1995). Eulerian polynomials and Faulhaber’s result on sums of powers of integers. The College Mathematics Journal, 26, 118-123. doi:10.1080/07468342.1995.11973680
[27] Laissaoui, D., & Rahmani, M. (2017). An explicit formula for sums of powers of integers in terms of Stirling numbers. Journal of Integer Sequences, 20. Article 17.4.8, 6 pp. · Zbl 1357.11027
[28] Mezö, I. (2010). A new formula for the Bernoulli polynomials. Results in Mathematics, 58, 329-335. doi:10.1007/s00025-010-0039-z · Zbl 1237.11010 · doi:10.1007/s00025-010-0039-z
[29] Mezö, I. (2020). Combinatorics and number theory of counting sequences. Boca Raton (FL): CRC Press, Taylor & Francis Group. · Zbl 1445.05001
[30] Moser, W. O. J. (1998). Sums of powers of a finite sequence: a geometric approach. Crux Mathematicorum, 24, 145-147.
[31] Petersen, T. K. (2013). Two-sided Eulerian numbers via balls in boxes. Mathematics Magazine, 86, 159-176. doi:10.4169/math.mag.86.3.159 · Zbl 1293.05004
[32] Pfaff, T. J. (2007). Deriving a formula for sums of powers of inetgers. PME Journal, 12, 425-430. · Zbl 1386.97002
[33] Qi, F., & Chapman, R. J. (2016). Two closed forms for the Bernoulli polynomials. Journal of Number Theory, 159, 89-100. doi:10.1016/j.jnt.2015.07.021 · Zbl 1400.11070 · doi:10.1016/j.jnt.2015.07.021
[34] Ramírez, J. L., Villamarín, S. N., & Villamizar, D. (2018). Eulerian numbers associated with arithmetical progressions. The Electronic Journal of Combinatorics, 25. Article #P1.48, 12 pp. · Zbl 1391.11055 · doi:10.37236/7182
[35] Shirali, S. (2018). Stirling set numbers & powers of integers. At Right Angles, \(7, 26-32\).
[36] Spivey, M. Z. (2019). The art of proving binomial identities. Boca Raton (FL): CRC Press, Taylor & Francis Group. · Zbl 1419.05002 · doi:10.1201/9781351215824
[37] Tsao, H. P. (2008). Explicit polynomial expressions for sums of powers of an arithmetic progression. The Mathematical Gazette, 92, 87-92. doi:10.1017/S0025557200182610 · doi:10.1017/S0025557200182610
[38] Tsao, H. P. (2011). Sums of powers and Eulerian numbers. The Mathematical Gazette, 95, 347-349. doi:10.1017/S0025557200003247 · doi:10.1017/S0025557200003247
[39] Williams, K. S. (1997). Bernoulli’s identity without calculus. Mathematics Magazine, 70, 47-50. doi:10.1080/0025570X.1997.11996499 · Zbl 0880.11023
[40] Wu, D. W. (2001). Bernoulli numbers and sums of powers. International Journal of Mathematical Education in Science and Technology, 32, 440-443. doi:10.1080/00207390117519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.