×

On some polynomials applied to the theory of hyperbolic differential equations. (English) Zbl 1465.11073

Summary: In this paper, we study a class of sequences of polynomials linked to the sequence of Bell polynomials. Some sequences of this class have applications on the theory of hyperbolic differential equations and other sequences generalize Laguerre polynomials and associated Lah polynomials. We discuss, for these polynomials, their explicit expressions, relations to the successive derivatives of a given function, real zeros and recurrence relations. Some known results are significantly simplified.

MSC:

11B73 Bell and Stirling numbers
11B83 Special sequences and polynomials
12H20 Abstract differential equations

References:

[1] Aboud A., Bultel J.-P., Chouria A., Luque J.-G., O. Mallet O.: Word Bell polynomials. Sémin. Lothar. Comb.75, Art. B75h (2017)
[2] Ahuja J. C., Enneking E. A.: Concavity property and a recurrence relation for associated Lah numbers. Fibonacci Quart.17,158-61 (1979) · Zbl 0405.10010
[3] Belbachir H., Mihoubi M.: A generalized recurrence for Bell polynomials: an alternate approach to Spivey and Gould Quaintance formulas. European J. Combin.30,1254-1256 (2009) · Zbl 1187.05007
[4] Boyadzhiev K. N.: Lah numbers, Laguerre polynomials of order negative one, and then-th derivative of exp(1/x). Acta Univ. Sapientiae, Mathematica8(1), 22-31 (2016) · Zbl 1398.11108
[5] Chouria A., Luque J. -G.:r-Bell polynomials in combinatorial Hopf algebras. C. R. Acad. Sci. Paris, Ser. I.355,243-247 (2017) · Zbl 1370.16030
[6] Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Company, Dordrecht (1974) · Zbl 0283.05001
[7] Courant R., Hilbert D.: Methoden der Mathematischen Physik 2. Springer, Berlin (1937) · Zbl 0017.39702
[8] Dimitrov D. K., Rafaeli F. R.: Monotonicity of zeros of Laguerre polynomials. J. Comput. Appl. Math.308,699-702 (2009) · Zbl 1181.33010
[9] Djordjevi´c G. B.: On the generalized Laguerre polynomials. Fibonacci Quart.39,403-408 (2001) · Zbl 1010.33002
[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G.: Higher Transcendental Functions, Vol. III. Based on notes left by Harry Bateman. Reprint of the 1955 original. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla. (1981) · Zbl 0542.33001
[11] Eu S. P., Fu T. S., Liang Y. H., Wong T. L.: OnxD-generalizations of Stirling numbers and Lah numbers via graphs and rooks. Electron. J. Combin.24,#P2.9 (2017) · Zbl 1412.11051
[12] Gould H. W., Quaintance J.: Implications of Spivey’s Bell number formula. J. Integer Seq.11,Art. 08.3.7 (2008) · Zbl 1204.11054
[13] Hardy G. H., Littlewood J. E., Ploya G.: Inequalities. Cambridge: The University Press (1952) · Zbl 0047.05302
[14] Katriel J.: On a generalized recurrence for Bell numbers. J. Integer Seq.11,Art. 08.3.8 (2008) · Zbl 1204.11055
[15] Kim T., Dolgy D. V., Kim D. S., Kwon H. I., Seo J. J.: Differential equations arising from certain Sheffer sequence. J. Comput. Anal. Appl.23(8), 1359-1367 (2017)
[16] Mangontarum M. M.: Spivey’s Bell number formula revisited. J. Integer Seq.21,Art. 18.1.1 (2018) · Zbl 1390.11056
[17] Mez˝o I.: The dual of Spivey’s Bell number formula. J. Integer Seq.15,Art. 12.2.4 (2012) · Zbl 1291.11053
[18] Mihoubi M.: Bell polynomials and binomial type sequences. Discrete Math.308,2450-2459 (2008) · Zbl 1147.05006
[19] Mihoubi M.: The role of binomial type sequences in determination identities for Bell polynomials. Ars Combin.111,323-337 (2013) · Zbl 1313.05020
[20] Mihoubi M., Belbachir H.: Linear recurrences forr-Bell polynomials. J. Integer Seq.17,Art. 14.10.6 (2014) · Zbl 1310.11030
[21] Mihoubi M., Rahmani M.: The partialr-Bell polynomials. Afr. Mat.28(7-8), 1167-1183 (2017) · Zbl 1387.05018
[22] Mihoubi M., Reggane L.: Thes-degenerater-Lah numbers. Ars Combin.120,333-340 (2015) · Zbl 1349.11018
[23] Nandi S. B., Dutta S. K.: On associated and generalized Lah numbers and applications to discrete distribution. Fibonacci Quart.25(2), 128-136 (1987) · Zbl 0617.62010
[24] Nyul G., Rácz G.: Ther-Lah numbers. Discrete Math.338,1660-1666 (2015) Online Journal of Analytic Combinatorics, Issue 15 (2020), #02 18MILOUD MIHOUBI AND MADJID SAHARI · Zbl 1315.05018
[25] Qi F., Lim D., Guo B.-N.: Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A: Matemáticas112,(2018), in press; Available online at http://dx.doi.org/10.1007/s13398-017-0427-2 · Zbl 1439.11088
[26] Qi F., Niu D.-W., Guo B.-N.: Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A: Matemáticas112,(2018), in press; Available online at https://doi.org/10.1007/???
[27] Rassias Th. M., Srivastava H. M.: Some general families of generating functions for the Laguerre polynomials. J. Math. Anal. Appl.174,528-538 (1993) · Zbl 0787.33006
[28] Shattuck M.: Some combinatorial formulas for the partialr-Bell polynomials. Notes Number Th. Discr. Math.23(1), (2017) 63-76 · Zbl 1386.05014
[29] Spivey M. Z.: A generalized recurrence for Bell numbers. J. Integer Seq.11,Art. 08.2.5 (2008) · Zbl 1231.11026
[30] Stromberg K. R.: Introduction to classical real analysis, Wadsworth, (1981). · Zbl 0454.26001
[31] Wagner D. G.: Total positive of Hadamard products. J. Math. Anal. Appl.163,459-483 (1992) · Zbl 0783.15010
[32] Wang Y., Yeh Y. N.: Polynomials with real zeros and Pólya frequency sequences. J. Combin. Theory Ser. A109,63-74 (2005) · Zbl 1057.05007
[33] Xu A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.