×

A class of big \((p, q)\)-Appell polynomials and their associated difference equations. (English) Zbl 1499.11128

Summary: In the present paper, we introduce and investigate the big \((p,q)\)-Appell polynomials. We prove an equivalence theorem satisfied by the big \((p,q)\)-Appell polynomials. As a special case of the big \((p,q)\)-Appell polynomials, we present the corresponding equivalence theorem, recurrence relation and difference equation for the big \(q\)-Appell polynomials. We also present the equivalence theorem, recurrence relation and differential equation for the usual Appell polynomials. Moreover, for the big \((p,q)\)-Bernoulli polynomials and the big \((p,q)\)-Euler polynomials, we obtain recurrence relations and difference equations. In the special case when \(p=1\), we obtain recurrence relations and difference equations which are satisfied by the big \(q\)-Bernoulli polynomials and the bigq-Euler polynomials. In the case when \(p=1\) and \(q\rightarrow 1-\), the big \((p,q)\)-Appell polynomials reduce to the usual Appell polynomials. Therefore, the recurrence relation and the difference equation obtained for the big \((p,q)\)-Appell polynomials coincide with the recurrence relation and differential equation satisfied by the usual Appell polynomials. In the last section, we have chosen to also point out some obvious connections between the \((p,q)\)-analysis and the classical \(q\)-analysis, which would show rather clearly that, in most cases, the transition from a known \(q\)-result to the corresponding \((p,q)\)-result is fairly straightforward.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
33C05 Classical hypergeometric functions, \({}_2F_1\)
39A13 Difference equations, scaling (\(q\)-differences)
Full Text: DOI

References:

[1] W. A. Al-Salam,q-Bernoulli numbers and polynomials,Math. Nachr.17(1959), 239-260. · Zbl 0087.28304
[2] W. A. Al-Salam,q-Appell polynomials,Ann. Mat. Pura Appl.(Ser.4)77(1967), 31-45. · Zbl 0157.38901
[3] G. Bretti and P. E. Ricci, Multidimensional extensions of the Bernoulli and Appell polynomials,Taiwanese J. Math.8(2004), 415-428. · Zbl 1084.33007
[4] U. Duran, M. Ac¸ıkg ¨oz and S. Aracı, Unified (p,q)- analog of Apostol type polynomials of orderα,Filomat32(2018), 387-394. · Zbl 1488.11056
[5] M. El-Mikkawy and F. Atlan, Derivation of identities involving some special polynomials and numbers via generating functions with applications,Appl. Math. Comput.220(2013), 518-535. · Zbl 1329.33008
[6] M.-X. He and P. E. Ricci, Differential equation of Appell polynomials via factorization method,J. Comput. Appl. Math.139(2002), 231-237. · Zbl 0994.33008
[7] Y. He, S. Araci and H. M. Srivastava, Summation formulas for the products of the Frobenius-Euler polynomials,Ramanujan J.44 (2017), 177-195. · Zbl 1434.11059
[8] L. Infeld and T. E. Hull, The factorization method,Rev. Mod. Phys.23(1951), 21-68. · Zbl 0043.38602
[9] V. Kac and P. Cheung,Quantum Calculus, Springer-Verlag, New York, Berlin and Heidelberg, 2002. · Zbl 0986.05001
[10] B. Kurt, Relations on the Apostol type (p,q)-Frobenius-Euler polynomials and generalizations of the Srivastava-Pint´er addition theorems,Turkish J. Anal. Number Theory5(2017), 126-131.
[11] Q.-M. Luo, Some results for theq-Bernoulli andq-Euler polynomials,J. Math. Anal. Appl.363(2010), 7-18. · Zbl 1209.11028
[12] Q.-M. Luo and H. M. Srivastava,q-Extensions of some relationships between the Bernoulli and Euler polynomials,Taiwanese J. Math.15(2011), 241-257. · Zbl 1238.05025
[13] N. I. Mahmudov, Difference equations ofq-Appell polynomials,Appl. Math. Comput.245(2014), 539-543. · Zbl 1335.39016
[14] N. I. Mahmudov and M. E. Keleshteri, On a class of generalizedq-Bernoulli andq-Euler polynomials,Adv. Difference Equ.2013 (2013) (1), Article ID 115, 1-10. · Zbl 1380.11019
[15] N. I. Mahmudov and M. E. Keleshteri,q-Extensions for the Apostol type polynomials,J. Appl. Math.2014(2014) (2), Article ID 868167, 1-8. · Zbl 1442.11044
[16] M. A. ¨Ozarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials,Comput. Math. Appl.62(2011), 2452-2462. · Zbl 1231.33013
[17] M. A. ¨Ozarslan and B. Yılmaz, A set of finite order differential equations for the Appell polynomials,J. Comput. Appl. Math.259 (2014), 108-116. · Zbl 1291.33011
[18] H. ¨Ozden, Y. S¸ims¸ek and H. M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials,Comput. Math. Appl.60(2010), 2779-2787. · Zbl 1207.33015
[19] P. N. Sadjang, On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas,Results Math.73(2018) (1), Article ID 39, 1-15. · Zbl 1387.30080
[20] H. M. Srivastava, Some characterizations of Appell andq-Appell polynomials,Ann. Mat. Pura Appl.(Ser.4)130(1982), 321-329. · Zbl 0468.33007
[21] H. M. Srivastava, M. A. Boutiche and M. Rahmani, A class of Frobenius-type Eulerian polynomials,Rocky Mountain J. Math.48 (2018), 1003-1013. · Zbl 1431.11036
[22] H. M. Srivastava, M. Masjed-Jamei and M. R. Beyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and ApostolGenocchi polynomials,Appl. Math. Inform. Sci.12(2018), 907-916.
[23] H. M. Srivastava, M. A. ¨Ozarslan and B. Y. Yas¸ar, Some families of differential equations associated with the Hermite-based Appell polynomials and other classes of Hermite-based polynomials,Filomat28(2014), 695-708. · Zbl 1474.33053
[24] B. Y. Yas¸ar and M. A. ¨Ozarslan, Differential equations for the extended 2DBernoulli and Euler polynomials,Adv. Difference Equ. 107(2013), 1-16. · Zbl 1380.11021
[25] H. M. Srivastava, N. Tuglu and M. C¸ etin, Some results on theq-analogues of the incomplete Fibonacci and Lucas polynomials, Miskolc Math. Notes20(2019), 511-524 · Zbl 1438.11043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.