×

Harmonic number identities via polynomials with \(r\)-Lah coefficients. (Identités sur les nombres harmonique via des polynômes à coefficients \(r\)-Lah.) (English. French summary) Zbl 1478.11032

Summary: In this paper, polynomials whose coefficients involve \(r\)-Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated.

MSC:

11B75 Other combinatorial number theory
11B68 Bernoulli and Euler numbers and polynomials
11B73 Bell and Stirling numbers
11B83 Special sequences and polynomials

References:

[1] Ait-Amrane, Rachid; Belbachir, Hacène, Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform., 37, 7-11 (2010) · Zbl 1224.11033
[2] Ait-Amrane, Rachid; Belbachir, Hacène, Are the hyperharmonics integral, A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris, 349, 3-4, 115-117 (2011) · Zbl 1226.11031
[3] Belbachir, Hacène; Belkhir, Amine, Cross recurrence relations for \(r\)-Lah numbers, Ars Comb., 110, 199-203 (2013) · Zbl 1313.11034
[4] Benjamin, Arthur T.; Gaebler, David; Gaebler, Robert, A combinatorial approach to hyperharmonic numbers, Integers, 3, 1-9 (2003) · Zbl 1128.11309
[5] Benjamin, Arthur T.; Preston, Gregory O.; Quinn, Jennifer J., A Stirling encounter with harmonic numbers, Math. Mag., 75, 2, 95-103 (2002) · Zbl 1063.05002
[6] Borwein, David H.; Bailey, Jonathan M.; Girgensohn, Roland, Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc., 38, 2, 277-294 (1995) · Zbl 0819.40003
[7] Boyadzhiev, Khristo N., A series transformation formula and related polynomials, Int. J. Math. Math. Sci., 23, 3849-3866 (2005) · Zbl 1086.05006
[8] Boyadzhiev, Khristo N., Harmonic number identities via Euler’s transform, J. Integer Seq., 12, 6, 8 p. pp. (2009) · Zbl 1213.11054
[9] Boyadzhiev, Khristo N., Series transformation formulas of Euler type, Hadamard product of series, and harmonic number identities, Indian J. Pure Appl. Math., 42, 5, 371-386 (2011) · Zbl 1318.11041
[10] Boyadzhiev, Khristo N., Power series with skew-harmonic numbers, dilogarithms, and double integrals, Tatra Mt. Math. Publ., 56, 93-108 (2013) · Zbl 1309.11020
[11] Boyadzhiev, Khristo N., Binomial transform and the backward difference, Adv. Appl. Discrete Math., 13, 1, 43-63 (2014) · Zbl 1298.05015
[12] Boyadzhiev, Khristo N., Notes on the Binomial Transform. Theory and table with appendix on Stirling transform (2018), World Scientific · Zbl 1432.11001
[13] Boyadzhiev, Khristo N.; Dil, Ayhan, Geometric polynomials: properties and applications to series with zeta values, Anal. Math., 42, 3, 203-224 (2016) · Zbl 1389.11064
[14] Broder, Andrei Z., The \(r\)-Stirling numbers, Discrete Math., 49, 241-259 (1984) · Zbl 0535.05006
[15] Can, Mümün; Dağli, Muhammet Cihat, Extended Bernoulli and Stirling matrices and related combinatorial identities, Linear Algebra Appl., 444, 114-131 (2014) · Zbl 1285.05013
[16] Cereceda, José Luis, An introduction to hyperharmonic numbers (classroom note), Int. J. Math. Educ. Sci. Technol., 46, 3, 461-469 (2015) · Zbl 1318.97004
[17] Choi, Junesang, Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Inequal. Appl., 1 (2013) · Zbl 1283.11115
[18] Chu, Wenchang, Summation formulae involving harmonic numbers, Filomat, 26, 1, 143-152 (2012) · Zbl 1289.05019
[19] Chu, Wenchang; Livia, De Donno, Hypergeometric series and harmonic number identities, Adv. Appl. Math., 34, 1, 123-137 (2005) · Zbl 1062.05017
[20] Conway, John H.; Guy, Richard K., The book of numbers (1996), Springer · Zbl 0866.00001
[21] Dil, Ayhan; Boyadzhiev, Khristo N., Euler sums of hyperharmonic numbers, J. Number Theory, 147, 490-498 (2015) · Zbl 1311.11019
[22] Dil, Ayhan; Kurt, Veli, Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math., 5, 2, 212-229 (2011) · Zbl 1265.11041
[23] Dil, Ayhan; Kurt, Veli, Polynomials related to harmonic numbers and evaluation of harmonic number series I, Integers, 12, 1-18 (2012) · Zbl 1301.11033
[24] Dil, Ayhan; Mező, István, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., 206, 2, 942-951 (2008) · Zbl 1200.65104
[25] Dil, Ayhan; Mező, István; Cenkci, Mehmet, Evaluation of Euler-like sums via Hurwitz zeta values, Turk. J. Math., 41, 6, 1640-1655 (2017) · Zbl 1424.11130
[26] Dil, Ayhan; Muniroğlu, Erkan, Applications of derivative and difference operators on some sequences (2019)
[27] Flajolet, Philippe; Salvy, Bruno, Euler sums and contour integral representations, Exp. Math., 7, 1, 15-35 (1998) · Zbl 0920.11061
[28] Göral, Haydar; Sertbaş, Doğa Can, Almost all hyperharmonic numbers are not integers, J. Number Theory, 147, 495-526 (2017) · Zbl 1396.11050
[29] Goyal, Som Prakash; Laddha, R. K., On the generalized Riemann zeta functions and the generalized Lambert transform, Ganita Sandesh, 11, 2, 99-108 (1997) · Zbl 1186.11056
[30] Guo, Bai-Ni; Qi, Feng, Some integral representations and properties of Lah numbers, J. Algebra Number Theory Acad., 4, 3, 77-87 (2014)
[31] Kamano, Ken, Dirichlet series associated with hyperharmonic numbers, Mem. Osaka Inst. Tech., 56, 2, 11-15 (2011)
[32] Kargin, Levent, Some formulae for products of geometric polynomials with applications, J. Integer Seq., 20, 4 (2017) · Zbl 1394.11022
[33] Kargin, Levent; Çekim, Bayram, Higher order generalized geometric polynomials, Turk. J. Math., 42, 3, 887-903 (2018) · Zbl 1424.11059
[34] Kargin, Levent; Corcino, Roberto B., Generalization of Mellin derivative and its applications, Integral Transforms Spec. Funct., 27, 8, 620-631 (2016) · Zbl 1400.11066
[35] Kellner, Bernd C., Identities between polynomials related to Stirling and harmonic numbers, Integers, 14 (2014) · Zbl 1315.11018
[36] Knopf, Peter M., The operator \((x\frac{d}{dx})^n\) and its application to series, Math. Mag., 76, 5, 364-371 (2003) · Zbl 1056.33001
[37] Mező, István, About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., 50, 13-20 (2007) · Zbl 1212.11035
[38] Mező, István, Analytic extension of hyperharmonic numbers, Online J. Anal. Comb., 4 (2009) · Zbl 1190.33021
[39] Mező, István; Dil, Ayhan, Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., 7, 2, 310-321 (2009) · Zbl 1229.11043
[40] Mező, István; Dil, Ayhan, Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 130, 2, 360-369 (2010) · Zbl 1225.11032
[41] Nyul, Gábor; Rácz, Gabriella, The r-Lah numbers, Discrete Math., 338, 10, 1660-1666 (2015) · Zbl 1315.05018
[42] Paule, Peter; Schneider, Carsten, Computer proofs of a new family of harmonic number identities, Adv. Appl. Math., 31, 2, 359-378 (2003) · Zbl 1039.11007
[43] Petojević, Aleksandar, A note about the Pochhammer symbol, Mathematica Moravica, 12, 1, 37-42 (2008) · Zbl 1199.11111
[44] Rao, R. Sita Rama Chandra; Sarma, A. Siva Rama, Some identities involving the Riemann zeta function, Indian J. Pure Appl. Math., 10, 602-607 (1979) · Zbl 0399.10003
[45] Sándor, József; Crstici, Borislav, Handbook of number theory. Vol II (2004), Kluwer Academic Publishers · Zbl 1079.11001
[46] Sebaoui, Madjid; Laissaoui, Diffalah; Guettai, G.; Rahmani, Mourad, On s-Lah polynomials, Ars Comb., 142, 111-118 (2019) · Zbl 1463.05020
[47] Spieß, Jürgen, Some identities involving harmonic numbers, Math. Comput., 55, 132, 839-863 (1990) · Zbl 0724.05005
[48] Spivey, Michael Z., Combinatorial sums and finite differences, Discrete Math., 307, 24, 3130-3146 (2007) · Zbl 1129.05006
[49] Theisinger, Leopold, Bemerkung über die harmonische Reihe, Monatsh. Math. Phys., 26, 132-134 (1915) · JFM 45.0419.01
[50] Xu, Ce, Euler sums of generalized hyperharmonic numbers, J. Korean Math. Soc., 55, 5, 1207-1220 (2018) · Zbl 1397.11059
[51] Yan, Qinglun; Liu, Yaqing, Harmonic number identities involving telescoping method and derivative operator, Integral Transforms Spec. Funct., 28, 10, 703-709 (2017) · Zbl 1380.05016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.