×

Efficient computation of dual space and directional multiplicity of an isolated point. (English) Zbl 1418.65025

Summary: Isolated singularities typically occur at self-intersection points of planar algebraic curves, curve offsets, intersections between spatial curves and surfaces, and so on. The information characterizing the singularity can be captured in a local dual basis, expressing combinations of vanishing derivatives at the singular point. Macaulay’s algorithm is a classic algorithm for computing such a basis, for a point in an algebraic set. The integration method of Mourrain constructs much smaller matrices than Macaulay’s approach, by performing integration on previously computed elements.
In this work we are interested in the efficiency of dual basis computation, as well as its relation to orthogonal projection. First, we introduce an easy to implement criterion that avoids redundant computations during the computation of the dual basis, by deleting certain columns from the matrices in the integration method. In doing so, we explore general (non-monomial) bases for the associated primal quotient ring. Experiments show the efficient behavior of the improved method. Second, we introduce the notion of directional multiplicity, which expresses the multiplicity structure with respect to an axis, and is useful in understanding the geometry behind projection. We use this notion to shed light on the gap between the degree of the generator of the elimination ideal and the corresponding factor in the resultant.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
68W30 Symbolic computation and algebraic computation
14Q05 Computational aspects of algebraic curves

References:

[1] Alberti, L.; Mourrain, B.; Wintz, J., Topology and arrangement computation of semi-algebraic planar curves, Comput. Aided Geom. Des., 25, 8, 631-651 (2008) · Zbl 1172.14343
[2] Alcázar, J. G.; Díaz-Toca, G. M., Topology of 2d and 3d rational curves, Comput. Aided Geom. Des., 27, 7, 483-502 (2010) · Zbl 1210.65031
[3] Bates, D.; Peterson, C.; Sommese, A. J., A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set, J. Complex., 22, 4, 475-489 (2006) · Zbl 1100.65046
[4] Buchberger, B., Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem Nulldimensionalen Polynomiideal, J. Symb. Comput., 41, 3-4, 475-511 (2006), Mathematical Institute, University of Innsbruck: Mathematical Institute, University of Innsbruck Austria, Special Issue on Logic, Mathematics, and Computer Science: Interactions · Zbl 1158.01307
[5] Buchberger, B., Ein Algorithmisches Kriterium für die Lösbarkeit eines Algebraischen Gleichungssystems, Aequ. Math.. (Buchberger, B.; Winkler, F., Gröbner Bases and Applications. Gröbner Bases and Applications, London Math. Society Lecture Note Series, vol. 251 (1998), Cambridge Univ. Press), 3, 535-545 (1970), English translation · Zbl 0906.13007
[6] Corless, R. M.; Diaz-Toca, G. M.; Fioravanti, M.; Gonzalez-Vega, L.; Rua, I. F.; Shakoori, A., Computing the topology of a real algebraic plane curve whose defining equations are available only “by values”, Comput. Aided Geom. Des., 30, 7, 675-706 (2013) · Zbl 1285.14065
[7] Dayton, B. H.; Zeng, Z., Computing the multiplicity structure in solving polynomial systems, (Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation. Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ISSAC’05 (2005), ACM: ACM New York, NY, USA), 116-123 · Zbl 1360.65151
[8] Diaz-Toca, G. M.; Fioravanti, M.; Gonzalez-Vega, L.; Shakoori, A., Using implicit equations of parametric curves and surfaces without computing them: polynomial algebra by values, Comput. Aided Geom. Des., 30, 1, 116-139 (2013), Recent Advances in Applied Geometry · Zbl 1255.65048
[9] Elkadi, M.; Mourrain, B., Introduction à la Résolution des Systèmes Polynomiaux, vol. 59 (2007), Springer · Zbl 1127.13001
[10] Emiris, I.; Mourrain, B., Matrices in elimination theory, J. Symb. Comput., 28, 1-2, 3-44 (1999) · Zbl 0943.13005
[11] Gelfand, I. M.; Kapranov, M. M.; Zelevinski, A., Discriminants, Resultants, and Multidimensional Determinants (1994), Birkhäuser · Zbl 0827.14036
[12] Hauenstein, J. D.; Mourrain, B.; Szanto, A., Certifying isolated singular points and their multiplicity structure, (Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation. Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC’15 (2015), ACM: ACM New York, NY, USA), 213-220 · Zbl 1345.68286
[13] Huang, Y.; Wang, D., Computing intersection and self-intersection loci of parametrized surfaces using regular systems and Gröbner bases, Comput. Aided Geom. Des., 28, 9, 566-581 (2011) · Zbl 1247.65022
[14] Krone, R., Numerical algorithms for dual bases of positive-dimensional ideals, J. Algebra Appl., 12, 06, 1350018 (2013) · Zbl 1273.14127
[15] Krone, R.; Leykin, A., Eliminating dual spaces (2015), arXiv preprint
[16] Leykin, A.; Verschelde, J.; Zhao, A., Higher-order deflation for polynomial systems with isolated singular solutions, (Algorithms in Algebraic Geometry (2008), Springer), 79-97 · Zbl 1138.65038
[17] Li, N.; Zhi, L., Computing isolated singular solutions of polynomial systems: case of breadth one, SIAM J. Numer. Anal., 50, 1, 354-372 (2012) · Zbl 1247.65065
[18] Li, N.; Zhi, L., Computing the multiplicity structure of an isolated singular solution: case of breadth one, J. Symb. Comput., 47, 6, 700-710 (2012) · Zbl 1239.13038
[19] Li, Z.; Zhi, L., Computing the nearest singular univariate polynomials with given root multiplicities, Theor. Comput. Sci., 479, 150-162 (2013) · Zbl 1291.65082
[20] Li, N.; Zhi, L., Verified error bounds for isolated singular solutions of polynomial systems, SIAM J. Numer. Anal., 52, 4, 1623-1640 (2014) · Zbl 1310.65056
[21] Macaulay, F. S., The Algebraic Theory of Modular Systems, Cambridge Mathematical Library (1994), Cambridge University Press: Cambridge University Press Cambridge, New York, Melbourne · Zbl 0802.13001
[22] Maekawa, T.; Patrikalakis, N. M., Computation of singularities and intersections of offsets of planar curves, Comput. Aided Geom. Des., 10, 5, 407-429 (1993) · Zbl 0792.65006
[23] Mantzaflaris, A.; Mourrain, B., Deflation and certified isolation of singular zeros of polynomial systems, (Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation. Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, ISSAC’11 (2011), ACM: ACM New York, NY, USA), 249-256 · Zbl 1323.65054
[24] Mantzaflaris, A.; Mourrain, B., Singular zeros of polynomial systems, (Dokken, T.; Muntingh, G., SAGA - Advances in Shapes, Geometry, and Algebra. SAGA - Advances in Shapes, Geometry, and Algebra, Geometry and Computing, vol. 10 (2014), Springer International Publishing), 77-103 · Zbl 1331.65074
[25] Mantzaflaris, A.; Rahkooy, H.; Zafeirakopoulos, Z., On directional multiplicities of isolated points (2015), RISC: RISC Hagenberg, Austria, Technical Report 15-08
[26] Marinari, M. G.; Mora, T.; Möller, H. M., Gröbner duality and multiplicities in polynomial system solving, (Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation. Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC’95 (1995), ACM: ACM New York, NY, USA), 167-179 · Zbl 0919.12005
[27] Marinari, M.; Möller, H.; Mora, T., On multiplicities in polynomial system solving, Trans. Am. Math. Soc., 348, 8, 3283-3321 (1996) · Zbl 0910.13009
[28] Mourrain, B., Isolated points, duality and residues, J. Pure Appl. Algebra, 117, 469-493 (1997) · Zbl 0896.13020
[29] Rahkooy, H., Dual space algorithms for computing multiplicity structure of isolated points (2015), RISC: RISC Hagenberg, Austria, PhD thesis
[30] Rahkooy, H.; Zafeirakopoulos, Z., Using resultants for inductive Gröbner bases computation, ACM Commun. Comput. Algebra, 45, 1 (2011) · Zbl 1305.68368
[31] Stetter, H. J., Numerical Polynomial Algebra (2004), SIAM · Zbl 1058.65054
[32] van der Waerden, B. L., Algebra, vol. 1 (1991), Springer: Springer New York, Based in part on lectures by E. Artin and E. Noether · Zbl 0724.12001
[33] van der Waerden, B. L., Algebra, vol. 2 (1991), Springer: Springer New York, Based in part on lectures by E. Artin and E. Noether · Zbl 0724.12002
[34] Wu, X.; Zhi, L., Computing the multiplicity structure from geometric involutive form, (Proceedings of the Twenty-First International Symposium on Symbolic and Algebraic Computation. Proceedings of the Twenty-First International Symposium on Symbolic and Algebraic Computation, ISSAC’08 (2008), ACM: ACM New York, NY, USA), 325-332 · Zbl 1236.68302
[35] Zeng, Z., The closedness subspace method for computing the multiplicity structure of a polynomial system, Contemp. Math., 496, 347 (2009) · Zbl 1181.65074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.