×

Toward the development of a virtual spray test-rig using the smoothed particle hydrodynamics method. (English) Zbl 1410.76436

Summary: In this work, we present the numerical simulation of air-assisted liquid atomization at high pressure using the smoothed particle hydrodynamics (SPH) method. Different post-processing tools are applied to facilitate the comparison with experimental observations. This allows to quantitatively validate the numerical method against the experiment, in terms of (i) frequency of the Kelvin-Helmholtz instability that develops on the jet surface, and (ii) statistical distribution of the jet intact length. The qualitative comparison also shows a good prediction of the jet global instability and of the fragmented liquid lumps, with regards to length and time scales. In addition, the post-processing tools also give access to the local parameters of the generated spray in the vicinity of the nozzle, which are not easily accessible in a real experiments. Using these tools, 1D profiles and 2D maps of the liquid phase properties such as the volume fraction, the droplet concentration, the Sauter mean diameter (SMD) and the droplet sphericity are presented. Because of the Lagrangian nature of the SPH method, it is also possible to monitor the whole atomization cascade as a causal tree, from the primary instabilities to the spray characteristics. This tree contains various information such as the fragmentation spectrum and the breakup activity, which are of great interest for researchers and engineers. Hence, the capability of the smoothed particle hydrodynamics (SPH) method for simulating air-assisted atomization at high ambient pressure is demonstrated as well as its applicability to realistic configurations. This is a first step towards the development of a complete virtual spray test-rig.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs

References:

[1] Adami, S.; Hu, X.; Adams, N., A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation, J Comput Phys, 229, 5011-5021 (2010) · Zbl 1346.76161
[2] Amirshaghaghi, H.; Rahimian, M. H.; Safari, H.; Krafczyk, M., Large eddy simulation of liquid sheet breakup using a two-phase lattice Boltzmann method, Comput Fluids, 160, 93-107 (2018) · Zbl 1390.76695
[3] Bonet, J.; Lok, T. S.L., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput Methods Appl Mech Eng, 180, 97-115 (1999) · Zbl 0962.76075
[4] Brackbill, J.; Kothe, D.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 335-354 (1992) · Zbl 0775.76110
[5] Braun, S.; Koch, R.; Bauer, H. J., Smoothed particle hydrodynamics for numerical predictions of primary atomization, High performance computing in science and engineering ’16, 321-336 (2016), Springer
[6] Braun, S.; Wieth, L.; Dauch, T.; Keller, M.; Chaussonnet, G.; Klatt, J. N.; Höfler, C.; Koch, R.; Bauer, H. J., HPC Predictions of primary atomization with SPH: challenges and lessons learned, 11th international SPHERIC workshop (2016)
[7] Braun, S.; Wieth, L.; Koch, R.; Bauer, H. J., A framework for permeable boundary conditions in SPH: inlet, outlet, periodicity, Proc. of the 10th internat. SPHERIC workshop (2015)
[8] Braun, S.; Wieth, L.; Koch, R.; Bauer, H. J., Influence of trailing edge height on primary atomization: numerical studies applying the smoothed particle hydrodynamics (SPH) method, Proceedings of the international conference on liquid atomization and spray systems (ICLASS) (2015)
[9] Chaussonnet, G.; Koch, R.; Bauer, H. J.; Sänger, A.; Jakobs, T.; Kolb, T., Smoothed particle hydrodynamics simulation of an air-assisted atomizer operating at high pressure: influence of non-newtonian effects, J Fluids Eng, 140, 6, 061301 (2018)
[10] Cleary, P.; Monaghan, J. J., Conduction modelling using smoothed particle hydrodynamics, J Comput Phys, 148, 227-264 (1999) · Zbl 0930.76069
[11] Cleary, P. W., Modelling confined multi-material heat and mass flows using sph, Appl Math Model, 22, 12, 981-993 (1998)
[12] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J Comput Phys, 191, 448-475 (2003) · Zbl 1028.76039
[13] Cole, R. H., Underwater explosions (1965), Dover Publications
[14] Dauch, T.; Braun, S.; Wieth, L.; Chaussonnet, G.; Keller, M.; Koch, R.; H. J., B., Computational prediction of primary breakup in fuel spray nozzles for aero-engine combustors, ILASS Europe, 29th annual conference on liquid atomization and spray systems, Valencia, Spain (2017)
[15] Dauch, T.; Rapp, T.; Chaussonnet, G.; Braun, S.; Keller, M.; Kaden, J.; Koch, R.; Dachsbacher, C.; Bauer, H. J., Highly efficient computation of finite-time Lyapunov exponents (ftle) on GPUS based on three-dimensional SPH datasets, Comput Fluids, 175, 129-141 (2018) · Zbl 1410.76349
[16] Dhivyaraja, K.; Gaddes, D.; Freeman, E.; Tadigadapa, S.; Panchagnula, M., Dynamical similarity and universality of drop size and velocity spectra in sprays, J Fluid Mech, 860, 510-543 (2019) · Zbl 1415.76629
[17] Dumouchel, C., On the experimental investigation on primary atomization of liquid streams, Exp Fluids, 45, 371-422 (2008)
[18] Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R., On the shape of a set of points in the plane, IEEE Trans Inf Theory, 29, 4, 551-559 (1983) · Zbl 0512.52001
[19] Español, P.; Revenga, M., Smoothed dissipative particle dynamics, Phys Rev E, 67, 026705 (2003)
[20] Farago, Z.; Chigier, N., Morphological classification of disintegration of round liquid jets in a coaxial air stream, Atomization Sprays, 2, 137-153 (1992)
[21] Gingold, R.; Monaghan, J. J., Smoothed particle hydrodynamics-theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 375-389 (1977) · Zbl 0421.76032
[22] Gorokhovski, M.; Saveliev, V., Statistical universalities in fragmentation under scaling symmetry with a constant frequency of fragmentation, J Phys D Appl Phys, 41, 8, 085405 (2008)
[23] Höfler, C.; Braun, S.; Koch, R.; Bauer, H. J., Towards the numerical prediction of primary atomization using smoothed particle hydrodynamics, Proceedings of the European conference on liquid atomization and spray systems (ILASS) (2011)
[24] Hu, X.; Adams, N., A multi-phase SPH method for macroscopic and mesoscopic flows, J Comput Phys, 213, 844-861 (2006) · Zbl 1136.76419
[25] Hussein, H. J.; Capp, S. P.; George, W. K., Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet, J Fluid Mech, 258, 31-75 (1994)
[26] Jakobs, T.; Djordjevic, N.; Sanger, A.; Zarzalis, N.; Kolb, T., Influence of reactor pressure on twin-fluid atomization: basic investigations on burner design for high-pressure entrained flow gasifier, Atomization Sprays, 25, 12 (2015)
[27] Kapur, J. N.; Sahoo, P. K.; Wong, A. K., A new method for gray-level picture thresholding using the entropy of the histogram, Comput Vis Graph Image Process, 29, 3, 273-285 (1985)
[28] Lasheras, J.; Villermaux, E.; Hopfinger, E. J., Break-up and atomization of a round water jet by a high-speed annular air jet, J Fluid Mech, 357, 351-379 (1998)
[29] Li, X.; Soteriou, M. C., Detailed numerical simulation of liquid jet atomization in crossflow of increasing density, Int J Multiphase Flow (2018)
[30] Maciá, F.; Antuono, M.; González, L. M.; Colagrossi, A., Theoretical analysis of the no-slip boundary condition enforcement in SPH methods, Prog Theor Phys, 125, 6, 1091-1121 (2011) · Zbl 1287.76185
[31] Matas, J. P.; Delon, A.; Cartellier, A., Shear instability of an axisymmetric air-water coaxial jet, J Fluid Mech, 843, 575-600 (2018)
[32] Monaghan, J. J., Simulating free surface flows with SPH, J Comput Phys, 110, 2, 399-406 (1994) · Zbl 0794.76073
[33] Monaghan, J. J., Smoothed particle hydrodynamics, Rep Prog Phys, 68, 1703-1759 (2005)
[34] Monaghan, J. J.; Kocharyan, A., SPH simulation of multi-phase flow, Comput Phys Commun, 87, 225-235 (1995) · Zbl 0923.76195
[35] Müller, T.; Sänger, A.; Habisreuther, P.; Jakobs, T.; Trimis, D.; Kolb, T.; Zarzalis, N., Simulation of the primary breakup of a high-viscosity liquid jet by a coaxial annular gas flow, Int J Multiphase Flow, 87, 212-228 (2016)
[36] Pereira, G. G.; Cleary, P. W.; Serizawa, Y., Prediction of fluid flow through and jet formation from a high pressure nozzle using smoothed particle hydrodynamics, Chem Eng Sci, 178, 12-26 (2018)
[37] Rivest R. The md5 message-digest algorithm. 1991. https://tools.ietf.org/html/rfc1321; Rivest R. The md5 message-digest algorithm. 1991. https://tools.ietf.org/html/rfc1321
[38] Rosenfeld, A.; Pfaltz, J. L., Sequential operations in digital picture processing, J ACM, 13, 4, 471-494 (1966) · Zbl 0143.41803
[39] Salvador, F.; Ruiz, S.; Crialesi-Esposito, M.; Blanquer, I., Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation, Int J Multiphase Flow (2018)
[40] Sänger, A.; Jakobs, T.; Djordjevic, N.; Kolb, T., Effect of primary instability of a high viscous liquid jet on the spray quality generated by a twin-fluid atomizer, Proceedings of the European conference for liquid atomization and spray systems (ILASS) (2014)
[41] Sänger, A.; Jakobs, T.; Djordjevic, N.; Kolb, T., Experimental investigation on the influence of ambient pressure on twin-fluid atomization ofliquids with various viscosities, Proceedings of the triennal international conference on liquid atomization and spray system (ILASS) (2015)
[42] Shao, C.; Luo, K.; Yang, Y.; Fan, J., Detailed numerical simulation of swirling primary atomization using a mass conservative level set method, Int J Multiphase Flow, 89, 57-68 (2017)
[43] Sun, P.; Colagrossi, A.; Marrone, S.; Zhang, A., Detection of lagrangian coherent structures in the sph framework, Comput Methods Appl Mech Eng, 305, 849-868 (2016) · Zbl 1423.76370
[44] Szewc, K.; Pozorski, J.; Minier, J. P., Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method, Int J Numer Methods Eng, 92, 4, 343-369 (2012) · Zbl 1352.76098
[45] Takeda, H.; Miyama, S.; Sekiya, M., Numerical simulation of viscous flow by smoothed particle hydrodynamics, Prog Theor Phys, 92, 5, 939-960 (1994)
[46] Warncke, K.; Gepperth, S.; Sauer, B.; Sadiki, A.; Janicka, J.; Koch, R.; Bauer, H. J., Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet, Int J Multiphase Flow, 91, 208-224 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.