×

The hair-trigger effect for a class of nonlocal nonlinear equations. (English) Zbl 1390.35151

Summary: We prove the hair-trigger effect for a class of nonlocal nonlinear evolution equations on \(\mathbb{R}^d\) which have only two constant stationary solutions, 0 and \(\theta > 0\). The effect consists in that the solution with an initial condition non identical to zero converges (when time goes to \(\infty\)) to {\(\theta\)} locally uniformly in \(\mathbb{R}^d\). We also find sufficient conditions for existence, uniqueness and comparison principle in the considered equations.

MSC:

35K57 Reaction-diffusion equations
35B40 Asymptotic behavior of solutions to PDEs
47G20 Integro-differential operators
45G10 Other nonlinear integral equations

References:

[1] Aguerrea M, Gomez C and Trofimchuk S 2012 On uniqueness of semi-wavefronts Math. Ann.354 73-109 · Zbl 1311.45008
[2] Alfaro M 2017 Fujita blow up phenomena and hair trigger effect: the role of dispersal tails Ann. Inst. Henri Poincaré Anal. Non Linéaire 34 1309-27 · Zbl 1379.35037
[3] Alfaro M and Coville J 2017 Propagation phenomena in monostable integro-differential equations: acceleration or not? J. Differ. Equ.263 5727-58 · Zbl 1409.35204
[4] Andreu-Vaillo F, Mazón J M, Rossi J D and Toledo-Melero J J 2010 Nonlocal Diffusion Problems(Mathematical Surveys and Monographs vol 165) (Providence, RI: American Mathematical Society) · Zbl 1214.45002
[5] Aronson D G 1977 The asymptotic speed of propagation of a simple epidemic Nonlinear Diffusion NSF-CBMS Regional Conf. Nonlinear Diffusion Equations(Univ. Houston, Houston, TX, 1976) (London: Pitman) pp 1-23 · Zbl 0361.35011
[6] Aronson D G and Weinberger H F 1975 Nonlinear diffusion in population genetics, combustion and nerve pulse propagation Partial Differential Equations and Related Topics (Program, Tulane Univ., New Orleans, LA, 1974)(Lecture Notes in Mathematics vol 446) (Berlin: Springer) pp 5-49 · Zbl 0325.35050
[7] Aronson D G and Weinberger H F 1978 Multidimensional nonlinear diffusion arising in population genetics Adv. Math.30 33-76 · Zbl 0407.92014
[8] Aydogmus O 2018 Phase transitions in a logistic metapopulation model with nonlocal interactions Bull. Math. Biol.80 228-53 · Zbl 1385.92037
[9] Brändle C, Chasseigne E and Ferreira R 2011 Unbounded solutions of the nonlocal heat equation Commun. Pure Appl. Anal.10 1663-86 · Zbl 1233.35044
[10] Berestycki H, Coville J and Vo H-H 2016 Persistence criteria for populations with non-local dispersion J. Math. Biol.72 1693-745 · Zbl 1346.35202
[11] Bolker B and Pacala S W 1997 Using moment equations to understand stochastically driven spatial pattern formation in ecological systems Theor. Popul. Biol.52 179-97 · Zbl 0890.92020
[12] Bolker B and Pacala S W 1999 Spatial moment equations for plant competitions: understanding spatial strategies and the advantages of short dispersal Am. Nat.153 575-602
[13] Bonnefon O, Coville J, Garnier J and Roques L 2014 Inside dynamics of solutions of integro-differential equations Discrete Contin. Dyn. Syst. B 19 3057-85 · Zbl 1310.35235
[14] Clark J, Lewis M, McLachlan J and HilleRisLambers J 2003 Estimating population spread: what can we forecast and how well? Ecology 84 1979-88
[15] Cousens R, Dytham C and Law R 2008 Dispersal in Plants: a Population Perspective (Oxford: Oxford University Press) p 240
[16] Coville J 2007 Maximum principles, sliding techniques and applications to nonlocal equations Electron. J. Differ. Equ.68 1-23 (https://ejde.math.txstate.edu/Volumes/2007/68/coville.pdf) · Zbl 1137.35321
[17] Coville J, Dávila J and Martínez S 2008 Nonlocal anisotropic dispersal with monostable nonlinearity J. Differ. Equ.244 3080-118 · Zbl 1148.45011
[18] Coville J, Dávila J and Martínez S 2013 Pulsating fronts for nonlocal dispersion and KPP nonlinearity Ann. Inst. Henri Poincaré Anal. Non Linéaire 30 179-223 · Zbl 1288.45007
[19] Coville J and Dupaigne L 2007 On a non-local equation arising in population dynamics Proc. R. Soc. Edinburgh A 137 727-55 · Zbl 1133.35056
[20] Crandall M G, Ishii H and Lions P-L 1992 User’s guide to viscosity solutions of second order partial differential equations Bull. Am. Math. Soc.27 1-67 · Zbl 0755.35015
[21] Dancer E N and Du Y 2003 Some remarks on Liouville type results for quasilinear elliptic equations Proc. Am. Math. Soc.131 1891-9 · Zbl 1076.35038
[22] Dieckmann U and Law R 2000 Relaxation projections and the method of moments The Geometry of Ecological Interactions (Cambridge: Cambridge University Press) pp 412-55
[23] Diekmann O 1978 On a nonlinear integral equation arising in mathematical epidemiology Differential Equations and Applications (Proc. 3rd Scheveningen Conf. (Scheveningen, 1977))(North-Holland Mathematics Studies vol 31) (Amsterdam: North-Holland) pp 133-40 · Zbl 0386.45006
[24] Diekmann O 1978 Thresholds and travelling waves for the geographical spread of infection J. Math. Biol.6 109-30 · Zbl 0415.92020
[25] Durrett R 1988 Crabgrass, measles and gypsy moths: an introduction to modern probability Bull. Am. Math. Soc.18 117-43 · Zbl 0653.60095
[26] Fife P C 1979 Mathematical Aspects of Reacting and Diffusing Systems(Lecture Notes in Biomathematics vol 28) (Berlin: Springer) · Zbl 0403.92004
[27] Finkelshtein D, Kondratiev Y and Kutoviy O 2012 Semigroup approach to birth-and-death stochastic dynamics in continuum J. Funct. Anal.262 1274-308 · Zbl 1250.47090
[28] Finkelshtein D, Kondratiev Y and Tkachov P 2015 Traveling waves and long-time behavior in a doubly nonlocal Fisher-KPP equation (arXiv:1508.02215)
[29] Finkelshtein D, Kondratiev Y and Tkachov P 2016 Accelerated front propagation for monostable equations with nonlocal diffusion (arXiv:1611.09329)
[30] Finkelshtein D and Tkachov P 2017 Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line Appl. Anal. (https://doi.org/10.1080/00036811.2017.1400537) · Zbl 1407.35027
[31] Finkelshtein D and Tkachov P 2018 Kesten’s bound for sub-exponential densities on the real line and its multi-dimensional analogues Adv. Appl. Probab. to appear · Zbl 1390.35151
[32] Fisher R 1937 The wave of advance of advantageous genes Ann. Eugenics 7 355-69 · JFM 63.1111.04
[33] Fournier N and Méléard S 2004 A microscopic probabilistic description of a locally regulated population and macroscopic approximations Ann. Appl. Probab.1 1880-919 · Zbl 1060.92055
[34] Garnier J 2011 Accelerating solutions in integro-differential equations SIAM J. Math. Anal.43 1955-74 · Zbl 1232.47058
[35] Giga Y, Goto S, Ishii H and Sato M-H 1991 Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains Indiana Univ. Math. J.40 443-70 · Zbl 0836.35009
[36] Grigoryan A, Kondratiev Yu, Piatnitski A and Zhizhina E 2017 Point-wise estimates for nonlocal heat kernel of convolution type operators (arXiv:1707.06709)
[37] Hagan P S 1981 The instability of nonmonotonic wave solutions of parabolic equations Stud. Appl. Math.64 57-88 · Zbl 0452.35068
[38] Hamel F and Ryzhik L 2014 On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds Nonlinearity 27 2735 · Zbl 1317.35122
[39] Kanel’ J I 1964 Stabilization of the solutions of the equations of combustion theory with finite initial functions Mat. Sb.65 398-413
[40] Kendall D G 1965 Mathematical models of the spread of infection Mathematics and Computer Science in Biology and Medicine (London: H.M. Stationery Off.) pp 213-24
[41] Kolmogorov A N, Petrovsky I G and Piskunov N S 1937 Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique Bull. Univ. État Moscou Sér. Inter. A 1 1-26
[42] Levin S, Muller-Landau H, Nathan R and Chave J 2003 The ecology and evolution of seed dispersal: a theoretical perspective Ann. Rev. Ecol. Evol. Systematics 34 575-604
[43] Lutscher F, Pachepsky E and Lewis M A 2005 The effect of dispersal patterns on stream populations SIAM J. Appl. Math.65 1305-27 · Zbl 1068.92002
[44] Mollison D 1972 Possible velocities for a simple epidemic Adv. Appl. Probab.4 233-57 · Zbl 0251.92012
[45] Mollison D 1972 The rate of spatial propagation of simple epidemics Proc. of the 6th Berkeley Symp. on Mathematical Statistics and Probability vol III: Probability Theory(Univ. California Berkeley, CA, 1970/1971) (Berkeley, CA: University California Press) pp 579-614 · Zbl 0266.92008
[46] Murray J D 2003 Mathematical Biology. II(Interdisciplinary Applied Mathematics vol 18) 3rd edn (New York: Springer) (Spatial models and biomedical applications) · Zbl 1006.92002
[47] Ninomiya H, Tanaka Y and Yamamoto H 2017 Reaction, diffusion and non-local interaction J. Math. Biol.75 1203-33 · Zbl 1386.35209
[48] Pazy A 1983 Semigroups of Linear Operators and Applications to Partial Differential Equations(Applied Mathematical Sciences vol 44) (New York: Springer) · Zbl 0516.47023
[49] Perthame B and Souganidis P E 2005 Front propagation for a jump process model arising in spatial ecology Discrete Contin. Dyn. Syst.13 1235-46 · Zbl 1085.35017
[50] Raghib M, Hill N A and Dieckmann U 2011 A multiscale maximum entropy moment closure for locally regulated space-time point process models of population dynamics J. Math. Biol.62 605-53 · Zbl 1232.92074
[51] Schumacher K 1980 Travelling-front solutions for integro-differential equations. I J. Reine Angew. Math.316 54-70 · Zbl 0419.45004
[52] Shigesada N and Kawasaki K 1997 Biological Invasions: Theory and Practice (Oxford: Oxford University Press)
[53] Sun Y-J, Li W-T and Wang Z-C 2011 Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity Nonlinear Anal.74 814-26 · Zbl 1211.35068
[54] Weinberger H 1982 Long-time behavior of a class of biological models SIAM J. Math. Anal.13 353-96 · Zbl 0529.92010
[55] Yagisita H 2009 Existence and nonexistence of traveling waves for a nonlocal monostable equation Publ. Res. Inst. Math. Sci.45 925-53 · Zbl 1191.35093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.