×

On Teichmüller space of circle diffeomorphisms with Hölder continuous derivative. (English) Zbl 1461.30052

Summary: K. Matsuzaki [Rev. Mat. Iberoam. 36, No. 5, 1333–1374 (2020; Zbl 1468.30075)] introduced the Teichmüller space \(T_0^\alpha\) of diffeomorphisms of the unit circle with Hölder continuous derivatives and investigated its Schwarzian derivative model. This paper deals with the pre-Schwarzian derivative model \(T_0^\alpha (1)\) of the Teichmüller space \(T_0^\alpha\). It is shown that \(T_0^\alpha (1)\) is a connected open subset of \(\mathcal{B}_0^\alpha (\Delta)\) and the pre-Bers projection is a holomorphic split submersion in \(T_0^\alpha\).

MSC:

30C62 Quasiconformal mappings in the complex plane
30F60 Teichmüller theory for Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)

Citations:

Zbl 1468.30075
Full Text: DOI

References:

[1] Ahlfors, L., Lectures on Quasiconformal Mappings (2006), Cambridge: AMS, Cambridge · Zbl 1103.30001
[2] Ahlfors, L., Quasiconformal reflections, Acta Math., 109, 291-301 (1963) · Zbl 0121.06403 · doi:10.1007/BF02391816
[3] Ahlfors, L.; Bers, L., Riemann’s mapping theorem for variable metrics, Ann. Math., 72, 385-404 (1960) · Zbl 0104.29902 · doi:10.2307/1970141
[4] Anderson, JM; Cantón, A.; Fernández, JL, On smoothness of symmetric mappings, Complex Var. Theory Appl., 37, 161-169 (1998) · Zbl 0952.30015
[5] Anderson, JM; Hinkkanen, A., Quasiconformal self-mappings with smooth boundary values, Bull. Lond. Math. Soc., 26, 549-556 (1994) · Zbl 0830.30012 · doi:10.1112/blms/26.6.549
[6] Astala, K.; Gehring, FW, Injectivity, the BMO norm and the universal Teichmüller space, J. Analyse Math., 46, 16-57 (1986) · Zbl 0628.30026 · doi:10.1007/BF02796572
[7] Astala, K.; Zinsmeister, M., Teichmüller spaces and BMOA, Math. Ann., 289, 613-625 (1991) · Zbl 0896.30028 · doi:10.1007/BF01446592
[8] Becker, J., Löwnersche differentialgleichung und schlichtheitskriterien, Math. Ann., 202, 321-335 (1973) · Zbl 0236.30024 · doi:10.1007/BF01433462
[9] Becker, J.: Conformal mappings with quasiconformal extensions, aspects of contemporary complex analysis. In: Proceeding of Conference on Durham, 1979, pp. 37-77. Academic Press, Cambridge (1980) · Zbl 0491.30012
[10] Bers, L., A non-standard integral equation with applications to quasiconformal mappings, Acta Math., 116, 113-134 (1966) · Zbl 0145.09502 · doi:10.1007/BF02392814
[11] Beurling, A.; Ahlfors, L., The boundary correspondence under quasiconformal mappings, Acta Math., 96, 125-142 (1956) · Zbl 0072.29602 · doi:10.1007/BF02392360
[12] Carleson, L., On mappings, conformal at the boundary, J. Anal. Math., 19, 1-13 (1967) · Zbl 0186.13701 · doi:10.1007/BF02788706
[13] Cantón, A., On smoothness of symmetric mappings II, Proc. Am. Math. Soc., 133, 103-113 (2004) · Zbl 1107.30016 · doi:10.1090/S0002-9939-04-07498-2
[14] Cui, G., Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China Ser A, 43, 267-279 (2000) · Zbl 0965.30018 · doi:10.1007/BF02897849
[15] Douady, A.; Earle, C., Conformally natural extension of homeomorphisms of the circle, Acta. Math., 157, 23-48 (1986) · Zbl 0615.30005 · doi:10.1007/BF02392590
[16] Dyn’kin, E., Estimates for asymptotically conformal mappings, Ann. Acad. Sci. Fenn. Math., 22, 275-304 (1997) · Zbl 0906.30006
[17] Fan, J.; Hu, J., Holomorphic contractibility and other properties of the Weil-Petersson and VMOA Teichmüller spaces, Ann. Acad. Sci. Fenn., 41, 587-600 (2016) · Zbl 1342.30045 · doi:10.5186/aasfm.2016.4137
[18] Gardiner, F.P., Harvey, W.J.: Universal Teichmüller space, Handbook of Complex Analysis, Vol. 1., pp. 457-492. ScienceDirect, North-Holland (2002) · Zbl 1067.30083
[19] Gardiner, FP; Sullivan, D., Symmetric structures on a closed curve, Am. J. Math., 114, 683-736 (1992) · Zbl 0778.30045 · doi:10.2307/2374795
[20] Gay-Balmaz, F.; Ratiu, TS, The geometry of the universal Teichmüller space and the Euler-Weil-Petersson equation, Adv. Math., 279, 717-778 (2015) · Zbl 1320.32018 · doi:10.1016/j.aim.2015.04.005
[21] Guo, H., Integrable Teichmüller spaces, Sci. China Ser A, 43, 47-58 (2000) · Zbl 0948.30052 · doi:10.1007/BF02903847
[22] Harmelin, R., Injectivity, quasiconformal reflections and the logarithmic derivative, Ann. Acad. Sci. Fenn. Math., 12, 61-68 (1987) · Zbl 0579.30027 · doi:10.5186/aasfm.1987.1211
[23] Lehto, O., Univalent Functions and Teichmüller Spaces (1986), New York: Springer, New York · Zbl 0606.30001
[24] Matsuzaki, K.: The universal Teichmüller space and diffeomorphisms of the circle with Hölder continuous derivatives, Handbook of group actions (Vol. I), Advanced Lectures in Mathematics vol. 31, (2015)
[25] Matsuzaki, K., Teichmüller space of circle diffeomorphisms with Hölder continuous derivative, Rev. Mat. Iberoam., 36, 1333-1374 (2020) · Zbl 1468.30075 · doi:10.4171/rmi/1169
[26] Matsuzaki, K., Circle diffeomorphisms, rigidity of symmetric conjugation and affine foliation of the universal Teichmüller space, Geometry, Dynamics, and Foliations: In honor of Steven Hurder and Takashi Tsuboi on the occasion of their 60th birthdays, Math. Soc. Jpn., 2017, 145-180 (2013) · Zbl 1387.30064
[27] Matsuzaki, K., Injectivity of the quotient Bers embedding of Teichmüller spaces, Ann. Acad. Sci. Fenn. Math., 44, 657-679 (2019) · Zbl 1422.30068 · doi:10.5186/aasfm.2019.4449
[28] Matsuzaki, K., Continuity of the barycentric extension of circle diffeomorphisms with Hölder continuous derivative, Trans. Lond. Math. Soc., 4, 129-147 (2017) · Zbl 1397.30019 · doi:10.1112/tlm3.12006
[29] Nag, S., The Complex Analytic Theory of Teichmüller Space (1988), Hoboken: Wiley, Hoboken · Zbl 0667.30040
[30] Nag, S.; Verjovsky, A., \(Diff(S^1)\) and the Teichmüller spaces, Commun. Math. Phys., 130, 1, 123-138 (1990) · Zbl 0705.32013 · doi:10.1007/BF02099878
[31] Radnell, D.; Schippers, E.; Staubach, W., A Hilbert manifold structure on the Weil-Petersson class Teichmüller space of bordered Riemann surfaces, Commun. Contemp. Math., 17, 42, 1550016 (2015) · Zbl 1319.30034 · doi:10.1142/S0219199715500169
[32] Shen, Y., Weil-Peterssen Teichmüller space, Am. J. Math., 140, 1041-1074 (2018) · Zbl 1421.30059 · doi:10.1353/ajm.2018.0023
[33] Shen, Y.; Tang, S., Weil-Petersson Teichmüller space II: smoothness of flow curves of \(H^{3/2}\)-vector fields, Adv. Math., 359, 106891 (2020) · Zbl 1436.30015 · doi:10.1016/j.aim.2019.106891
[34] Shen, Y.; Wei, H., Universal Teichmüller space and BMO, Adv. Math., 234, 129-148 (2013) · Zbl 1269.30030 · doi:10.1016/j.aim.2012.10.017
[35] Shen, Y., Wu, L.: Weil-Petersson Teichmüller space III: dependence of Riemann mappings for Weil-Petersson curves (2019). arXiv preprint arXiv:1907.12262
[36] Takhtajan, L.; Teo, LP, Weil-Petersson metric on the universal Teichmüller space, Mem. Am. Math. Soc., 183, 1-119 (2006) · Zbl 1243.32010
[37] Tang, S., Some characterizations of the integrable Teichmiiller space, Sci. China Math., 56, 541-551 (2013) · Zbl 1296.30033 · doi:10.1007/s11425-012-4472-1
[38] Tang, S.; Shen, Y., Integrable Teichmüller space, J. Math. Anal. Appl., 465, 658-672 (2018) · Zbl 1391.30058 · doi:10.1016/j.jmaa.2018.05.035
[39] Wei,H., Matsuzaki, K.: Teichmüller spaces of piecewise symmetric homeomorphisms on the unit circle (2019). arXiv:1908.08798 [math.CV]
[40] Yanagishita, M., Introduction of a complex structure on the \(p\)-integrable Teichmüller space, Ann. Acad. Sci. Fenn. Math., 39, 947-971 (2014) · Zbl 1301.30044 · doi:10.5186/aasfm.2014.3952
[41] Zhu, K., Operator Theory in Function Spaces (2007), Providence: American Mathematical Society, Providence · Zbl 1123.47001 · doi:10.1090/surv/138
[42] Zhu, K., Bloch type spaces of analytic functions, Rocky Mount. J. Math., 23, 1143-1177 (1993) · Zbl 0787.30019 · doi:10.1216/rmjm/1181072549
[43] Zhuravlev, I., Model of the universal Teichmüller space, Siberian Math. J., 27, 691-697 (1986) · Zbl 0616.30023 · doi:10.1007/BF00969197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.