×

Random conformal welding for finitely connected regions. (English) Zbl 1417.30013

Summary: Given a finitely connected region \(\Omega \) of the Riemann sphere whose complement consists of \(m\) mutually disjoint closed disks \({\bar{U}}_j\), the random homeomorphism \(h_j\) on the boundary component \(\partial U_j\) is constructed using the exponential Gaussian free field. The existence and uniqueness of random conformal welding of \(\Omega \) with \(h_j\) is established by investigating a non-uniformly elliptic Beltrami equation with a random complex dilatation. This generalizes the result of K. Astala et al. [Acta Math. 207, No. 2, 203–254 (2011; Zbl 1253.30032)] to multiply connected domains.

MSC:

30C62 Quasiconformal mappings in the complex plane
60D05 Geometric probability and stochastic geometry

Citations:

Zbl 1253.30032

References:

[1] Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009) · Zbl 1182.30001
[2] Astala, K., Jones, P., Kupiainen, A., Saksman, E.: Random conformal weldings. Acta Math. 207, 203-254 (2011) · Zbl 1253.30032 · doi:10.1007/s11511-012-0069-3
[3] Beurling, A., Ahlfors, L.: The boundary correspondence under quasiconformal mappings. Acta Math. 96, 125-142 (1956) · Zbl 0072.29602 · doi:10.1007/BF02392360
[4] Bishop, C.J.: Conformal welding and Koebe’s theorem. Ann. Math. 166, 613-656 (2007) · Zbl 1144.30007 · doi:10.4007/annals.2007.166.613
[5] Camia, F., Newman, C.M.: Critical percolation exploration path and \[SLE_6\] SLE6: a proof of convergence. Prob. Theor. Relat. Fields 139, 473-519 (2007) · Zbl 1126.82007 · doi:10.1007/s00440-006-0049-7
[6] Doyon, B.: Factorisation of conformal maps on finitely connected domains. Preprint (2011). arXiv:1107.0582v1 [math.cv]
[7] Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, vol. 76. American Mathematical Society, Providence (2000) · Zbl 0949.30002
[8] Hamilton, DH; Kühnau, R. (ed.), Conformal welding (2002), Amsterdam · Zbl 1081.30013
[9] Jones, P.W., Smirnov, S.K.: Removability theorems for Sobolev functions and quasiconformal maps. Ark. Mat. 38, 263-279 (2000) · Zbl 1034.30014 · doi:10.1007/BF02384320
[10] Kager, W., Nienhuis, B.: A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115, 1149-1229 (2004) · Zbl 1157.82327 · doi:10.1023/B:JOSS.0000028058.87266.be
[11] Lawler, G.F.: Conformal Invariant Processes in the Plane. American Mathematical Society, Providence (2005) · Zbl 1074.60002
[12] Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939-995 (2004) · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[13] Lawler, G.F., Sheffield, S.: A natural parametrization for the Schramm-Loewner evolution. Ann. Probab. 39, 1896-1937 (2011) · Zbl 1234.60087 · doi:10.1214/10-AOP560
[14] Lawler, G.F., Zhou, W.: SLE curves and natural parametrization. Ann. Probab. 41, 1556-1584 (2013) · Zbl 1288.60098 · doi:10.1214/12-AOP742
[15] Lehto, O.: Homeomorphisms with a Given Dilatation. Lecture Notes in Mathematics, vol. 118, pp. 58-73. Springer, Berlin (1970) · Zbl 0193.03703
[16] Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer, Berlin (1973) · Zbl 0267.30016 · doi:10.1007/978-3-642-65513-5
[17] Marshall, D.E.: Conformal welding for finitely connected regions. Comput. Methods Funct. Theory 11, 655-669 (2011) · Zbl 1252.30002 · doi:10.1007/BF03321879
[18] Radnell, D., Schippers, E.: Quasisymmetric sewing in rigged Teichmüller space. Commun. Contemp. Math. 8, 481-534 (2006) · Zbl 1108.30034 · doi:10.1142/S0219199706002210
[19] Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, 883-924 (2005) · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[20] Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221-288 (2000) · Zbl 0968.60093 · doi:10.1007/BF02803524
[21] Schramm, O., Sheffield, S.: The harmonic explorer and its convergence to SLE(4). Ann. Probab. 33, 2127-2148 (2006) · Zbl 1095.60007 · doi:10.1214/009117905000000477
[22] Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202, 21-137 (2009) · Zbl 1210.60051 · doi:10.1007/s11511-009-0034-y
[23] Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521-541 (2007) · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
[24] Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Preprint (2010). arXiv:1012.4797 [math.pr] · Zbl 1388.60144
[25] Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333, 239-244 (2001a) · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[26] Smirnov, S.: Critical percolation in the plane. I. Conformal invariance and Cardy’s formula. II. Continuum scaling limit. (long version of [25]) (2001b). arXiv:0909.4499
[27] Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435-1467 (2010) · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1441
[28] Tecu, N.: Random conformal weldings at criticality. Preprint (2012). arXiv:1205.3189v1 [math.cv]
[29] Williams, G.B.: Discrete conformal welding. Indiana Univ. Math. J. 53, 765-804 (2004) · Zbl 1056.30016 · doi:10.1512/iumj.2004.53.2392
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.