×

Conformal blocks and bilocal vertex operator transition amplitudes. (English) Zbl 1522.81541

Summary: We revisit the construction of the 2d conformal blocks of primary operator four-point functions as bilocal vertex operator correlators. We find an additional interpretation as a path integral over the reparametrizations of an intermediate cylinder. As a consequence we bridge the gap between the Kähler quantization of virasoro coadjoint orbits, \(\mathrm{SL}(2, \mathbb{R})\) Chern-Simons theory and the reparametrization formalism of 2d CFT that has made an appearance in recent literature.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T70 Quantization in field theory; cohomological methods

References:

[1] D. Friedan and S.H. Shenker, The Analytic Geometry of Two-Dimensional Conformal Field Theory, Nucl. Phys. B281 (1987) 509 [INSPIRE].
[2] H.L. Verlinde, Conformal Field Theory, 2 − D Quantum Gravity and Quantization of Teichmüller Space, Nucl. Phys. B337 (1990) 652 [INSPIRE]. · Zbl 0985.81681
[3] A.M. Polyakov, Quantum Gravity in Two-Dimensions, Mod. Phys. Lett. A2 (1987) 893 [INSPIRE].
[4] A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the Virasoro Group and 2D Gravity, Nucl. Phys. B323 (1989) 719 [INSPIRE].
[5] A. Alekseev and S.L. Shatashvili, From geometric quantization to conformal field theory, Commun. Math. Phys.128 (1990) 197 [INSPIRE]. · Zbl 0703.22014
[6] S. Nag and A. Verjovsky, Diff S1 and the Teichmüller spaces, Commun. Math. Phys.130 (1990) 123 [INSPIRE]. · Zbl 0705.32013
[7] G. Segal, Unitarity Representations of Some Infinite Dimensional Groups, Commun. Math. Phys.80 (1981) 301 [INSPIRE]. · Zbl 0495.22017
[8] Lazutkin, VF; Pankratova, TF, Normal forms and versal deformations for Hill’s equation, Funct. Anal. Appl., 9, 306 (1975) · Zbl 0357.34021 · doi:10.1007/BF01075876
[9] Witten, E., Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys., 114, 1 [INSPIRE] (1988) · Zbl 0632.22015 · doi:10.1007/BF01218287
[10] H.L. Verlinde and E.P. Verlinde, Conformal field theory and geometric quantization, in Trieste School and Workshop on Superstrings, Trieste, Italy (1989), pg. 422, Report number: PUPT-89-1149. · Zbl 0985.81681
[11] G.W. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, Commun. Math. Phys.123 (1989) 177 [INSPIRE]. · Zbl 0694.53074
[12] Mertens, TG; Turiaci, GJ; Verlinde, HL, Solving the Schwarzian via the Conformal Bootstrap, JHEP, 08, 136 (2017) · Zbl 1381.83089
[13] Nag, S., On the tangent space to the universal Teichmüller space, Ann. Acad. Sci. Fenn. Ser. A I Math., 18, 377 (1993) · Zbl 0794.32020
[14] Radnell, D.; Schippers, E., Quasisymmetric sewing in rigged Teichmüller space, Commun. Contemp. Math., 8, 481 (2006) · Zbl 1108.30034 · doi:10.1142/S0219199706002210
[15] Cotler, J.; Jensen, K., A theory of reparameterizations for AdS_3gravity, JHEP, 02, 079 (2019) · Zbl 1411.83079 · doi:10.1007/JHEP02(2019)079
[16] Nguyen, K., Reparametrization modes in 2d CFT and the effective theory of stress tensor exchanges, JHEP, 05, 029 (2021) · Zbl 1466.81060 · doi:10.1007/JHEP05(2021)029
[17] Haehl, FM; Rozali, M., Effective Field Theory for Chaotic CFTs, JHEP, 10, 118 (2018) · Zbl 1402.81223 · doi:10.1007/JHEP10(2018)118
[18] Haehl, FM; Reeves, W.; Rozali, M., Reparametrization modes, shadow operators, and quantum chaos in higher-dimensional CFTs, JHEP, 11, 102 (2019) · Zbl 1429.81045 · doi:10.1007/JHEP11(2019)102
[19] Anous, T.; Haehl, FM, On the Virasoro six-point identity block and chaos, JHEP, 08, 002 (2020) · Zbl 1454.81140 · doi:10.1007/JHEP08(2020)002
[20] H. Verlinde, Wormholes in Quantum Mechanics, arXiv:2105.02129 [INSPIRE]. · Zbl 1342.83211
[21] Donaldson, S., Riemann surfaces, Oxford graduate texts in mathematics (2011), Oxford, U.K.: Oxford University Press, Oxford, U.K. · Zbl 1235.30001
[22] L.V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, U.S.A. (1966). · Zbl 0138.06002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.