×

Optimal control analysis of treatment strategies of the dynamics of cholera. (English) Zbl 07659719

MSC:

92-XX Biology and other natural sciences
Full Text: DOI

References:

[1] Ganesan, D.; Gupta, S. S.; Legros, D., Cholera surveillance and estimation of burden of cholera, Vaccine, 38 (2020) · doi:10.1016/j.vaccine.2019.07.036
[2] Idoga, P. E.; Toycan, M.; Zayyad, M. A., Analysis of factors contributing to the spread of cholera in developing countries, The Eurasian Journal of Medicine, 51, 2, 121-127 (2019) · doi:10.5152/eurasianjmed.2019.18334
[3] Llanes, R.; Somarriba, L.; Hernández, G.; Bardají, Y.; Aguila, A.; Mazumder, R. N., Low detection of vibrio cholerae carriage in healthcare workers returning to 12 Latin american countries from Haiti, Epidemiology and Infection, 143, 5, 1016-1019 (2015) · doi:10.1017/s0950268814001782
[4] Momba, M.; Azab El-Liethy, M., Vibrio cholerae and Cholera Biotypes (2018), Pretoria, South Africa: Global Water Pathogen Project, Pretoria, South Africa
[5] Hattaf, K.; Rachik, M.; Saadi, S.; Tabit, Y.; Yousfi, N., Optimal control of tuberculosis with exogenous reinfection, Applied Mathematical Sciences, 3, 5, 231-240 (2009) · Zbl 1172.92023
[6] Miller Neilan, R. L.; Schaefer, E.; Gaff, H.; Fister, K. R.; Lenhart, S., Modeling optimal intervention strategies for cholera, Bulletin of Mathematical Biology, 72, 8, 2004-2018 (2010) · Zbl 1201.92045 · doi:10.1007/s11538-010-9521-8
[7] Namawejje, H.; Obuya, E.; Luboobi, L. S., Modeling optimal control of cholera disease under the interventions of vaccination, treatment and education awareness, Journal of Mathematics Research, 10, 5 (2018) · doi:10.5539/jmr.v10n5p137
[8] Panja, P., Optimal control analysis of a cholera epidemic model, Biophysical Reviews and Letters, 14, 01, 27-48 (2019) · doi:10.1142/s1793048019500024
[9] Javidi, M.; Ahmad, B., A study of a fractional-order cholera model, Applied Mathematics & Information Sciences, 8, 5, 2195-2206 (2014) · doi:10.12785/amis/080513
[10] Lamond, E.; Kinyanjui, J., Cholera Outbreak Guidelines: Preparedness, Prevention and Control (2012), Oxford, United Kingdom: Oxfam GB, Oxford, United Kingdom
[11] Ochoche, M. J.; Madubueze, E. C.; Akaabo, T. B., A mathematical model on the control of cholera: hygiene consciousness as a strategy, The Journal of Mathematics and Computer Science, 5, 2, 172-187 (2015)
[12] Wu, J.; Dhingra, R.; Gambhir, M.; Remais, J. V., Sensitivity analysis of infectious disease models: methods, advances and their application, Journal of The Royal Society Interface, 10, 86 (2013) · doi:10.1098/rsif.2012.1018
[13] Isere, A. O.; Osemwenkhae, J. E.; Okuonghae, D., Optimal control model for the outbreak of cholera in Nigeria, African Journal of Mathematics and Computer Science Research, 7, 2, 24-30 (2014) · doi:10.5897/ajmcsr2013.0527
[14] Edward, S.; Nyerere, N., A mathematical model for the dynamics of cholera with control measures, Applied and Computational Mathematics, 4, 2, 53 (2015) · doi:10.11648/j.acm.20150402.14
[15] Elhia, M.; Laaroussi, A.; Rachik, M.; Rachik, Z.; Labriji, E., Global stability of a susceptible-infected-recovered (sir) epidemic model with two infectious stages and treatment, International Journal of Science and Research, 3, 5, 114-121 (2014)
[16] Liao, S.; Yang, W., On the dynamics of a vaccination model with multiple transmission ways, International Journal of Applied Mathematics and Computer Science, 23, 4, 761-772 (2013) · Zbl 1285.93043 · doi:10.2478/amcs-2013-0057
[17] Gronwall, T. H., Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, 20, 4 (1919) · JFM 47.0399.02 · doi:10.2307/1967124
[18] Mafuta, P.; Mushanyu, J.; Nhawu, G., Invariant region, endemic equilibria and stability analysis, IOSR Journal of Mathematics, 10, 2, 118-120 (2014) · doi:10.9790/5728-1022118120
[19] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 1-2, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/s0025-5564(02)00108-6
[20] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A., On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28, 4, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/bf00178324
[21] Hincapié-Palacio, D.; Ospina, J.; Torres, D. F. M., Approximated analytical solution to an ebola optimal control problem, International Journal for Computational Methods in Engineering Science and Mechanics, 17, 5-6, 382-390 (2016) · Zbl 07871441 · doi:10.1080/15502287.2016.1231236
[22] Birkhoff, G.; Rota, G. C., Ordinary Differential Equations (1989), Boston: Ginn, Boston · Zbl 0183.35601
[23] Elhia, M.; Rachik, M.; Benlahmar, E., Optimal control of an sir model with delay in state and control variables, International Scholarly Research Notices, 2013 (2013), 403549 · Zbl 1300.92097 · doi:10.1155/2013/403549
[24] Fleming, W. H.; Rishel, R. W., Deterministic and stochastic optimal control, Springer Science & Business Media, 1 (2012)
[25] Isaac Oke, S.; Matadi, M. B.; Xulu, S. S., Optimal control analysis of a mathematical model for breast cancer, Mathematical and Computational Applications, 23, 2 (2018) · doi:10.3390/mca23020021
[26] Lenhart, S.; Workman, J. T., Optimal Control Applied to Biological Models (2007), London, UK: Chapman and Hall/CRC, London, UK · Zbl 1291.92010
[27] Gumel, A.; Shivakumar, P.; Sahai, B., A mathematical model for the dynamics of hiv-1 during the typical course of infection, Nonlinear Analysis: Theory, Methods & Applications, 47, 3, 1773-1783 (2001) · Zbl 1042.92512 · doi:10.1016/s0362-546x(01)00309-1
[28] Karrakchou, J.; Rachik, M.; Gourari, S., Optimal control and infectiology: application to an hiv/aids model, Applied Mathematics and Computation, 177, 2, 807-818 (2006) · Zbl 1096.92031 · doi:10.1016/j.amc.2005.11.092
[29] Lemos-Paião, A. P.; Silva, C. J.; Torres, D. F. M.; Venturino, E., Optimal control of aquatic diseases: a case study of Yemen’s cholera outbreak, Journal of Optimization Theory and Applications, 185, 3, 1008-1030 (2020) · Zbl 1444.92118 · doi:10.1007/s10957-020-01668-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.