×

Delay-dependent stability of predictor-corrector methods of Runge-Kutta type for stochastic delay differential equations. (English) Zbl 1542.65012

Summary: The delay-dependent mean square stability of stochastic delay differential equations is in the forefront the structure-preserving numerical algorithms. The sufficient and necessary conditions of mean square stability for a general class of stochastic Runge-Kutta via predictor-corrector methods (SRK-PCMs) are obtained, which perform better than existing schemes. Furthermore, by regulating factor \(\theta\) in drift term in corrector step, we could explore the optimal stable regions. Several theorems about convergence and stability are proved for SRK-PCMs. A thoroughgoing system of numerical experiments verify the theorems ans remarks.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
34K50 Stochastic functional-differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI

References:

[1] Higham, DJ; Mao, X.; Stuart, AM, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40, 1041-1063, 2002 · Zbl 1026.65003 · doi:10.1137/S0036142901389530
[2] Mao, X., Almost sure exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal., 53, 370-389, 2015 · Zbl 1327.65016 · doi:10.1137/140966198
[3] Higham, DJ; Mao, X.; Yuan, C., Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal., 45, 592-609, 2007 · Zbl 1144.65005 · doi:10.1137/060658138
[4] Buckwar, E.; Shadlow, T., Weak approximation of stochastic differential delay equations, IMA J. Numer. Anal., 25, 1, 57-86, 2005 · Zbl 1076.65010 · doi:10.1093/imanum/drh012
[5] Kloeden, PE; Shardlow, T., The milstein scheme for stochastic delay differential equations without using anticipative Calculus, Stoch. Anal. Appl., 30, 181-202, 2012 · Zbl 1247.65005 · doi:10.1080/07362994.2012.628907
[6] Li, X.; Mao, X.; Yin, G., Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in \(p\) th moment and stability, IMA J. Numer. Anal., 39, 2, 847-892, 2019 · Zbl 1461.65007 · doi:10.1093/imanum/dry015
[7] Milosevic, M.; Jovanovic, M.; Jankovic, S., An approximate method via Taylor series for stochastic functional differential equations, J. Math. Anal. Appl., 363, 128-137, 2010 · Zbl 1185.60078 · doi:10.1016/j.jmaa.2009.07.061
[8] Kloeden, PE; Shardlow, T., The Milstein scheme for stochastic delay differential equations without using anticipative calculus, Stoch. Anal. Appl., 30, 181-202, 2012 · Zbl 1247.65005 · doi:10.1080/07362994.2012.628907
[9] Guo, Q.; Qiu, M.; Mitsui, T., Asymptotic mean-square stability of explicit Runge-Kutta Maruyama methods for stochastic delay differential equations, J. Comput. Appl. Math., 296, 427-442, 2016 · Zbl 1329.60235 · doi:10.1016/j.cam.2015.10.014
[10] Hu, P., Huang, C.: Delay dependent stability of stochastic split-step \(\theta\) methods for stochastic delay differential equations, Appl. Math. Comput., (339), 663-674 (2018) · Zbl 1429.65017
[11] Hu, P., Huang, C.: Delay dependent asymptotic mean square stability analysis of the stochastic exponential Euler method, J Comput. Appl. Math., (382), 113068 (2021) · Zbl 1485.65013
[12] Mao, X., Stochastic Differential Equations and Applications, 2007, Chichester: Horwood, Chichester · Zbl 1138.60005
[13] Lutkepohl, H., Handbook of Matrices, 1996, Chichester: John Wiley & Sons Ltd, Chichester · Zbl 0856.15001
[14] Tracy, DS; Jinadasa, KG, Partitioned Kronecker products of matrices and applications, Canad. J. Statist., 17, 107-120, 1989 · Zbl 0684.62044 · doi:10.2307/3314768
[15] Nguyen, S.; Yin, G., Pathwise convergence rate for numerical solutions of stochastic differential equations, IMA J. Numer. Anal., 32, 2, 701-723, 2012 · Zbl 1246.65018 · doi:10.1093/imanum/drr025
[16] Wang, Z.; Li, X.; Le, J., Moment boundedness of linear stochastic delay differential equations with distributed delay, Stoch. Proc. Appl., 124, 586-612, 2014 · Zbl 1316.34082 · doi:10.1016/j.spa.2013.09.002
[17] Wang, Z.; Zhang, C., An analysis of stability of Milstein method for stochastic differential equations with delay, Comput. Math. Appl., 51, 1445-1452, 2006 · Zbl 1136.65009 · doi:10.1016/j.camwa.2006.01.004
[18] Buckwar, E.; Winkler, R., Multi-step Maruyama methods for stochastic delay differential equations, Stoch. Anal. Appl., 25, 933-959, 2007 · Zbl 1132.60052 · doi:10.1080/07362990701540311
[19] Kuchler, U.; Platen, E., Strong discrete time approximation of stochastic differential equations with time delay, Math. Comput. Simulat., 54, 189-205, 2000 · doi:10.1016/S0378-4754(00)00224-X
[20] Kuchler, U.; Platen, E., Weak discrete time approximation of stochastic differential equations with time delay, Math. Comput. Simulat., 59, 497-507, 2002 · Zbl 1001.65005 · doi:10.1016/S0378-4754(01)00431-1
[21] Cao, W.; Zhang, Z., On exponential mean-square stability of two-step maruyama methods for stochastic delay differential equations, J. Comput. Appl. Math., 245, 182-193, 2013 · Zbl 1262.65010 · doi:10.1016/j.cam.2012.12.026
[22] Cao, W.; Liu, M.; Fan, Z., MS-stability of the Euler-Maruyama method for stochastic differential delay equations, Appl. Math. Comput., 159, 1, 127-135, 2004 · Zbl 1074.65007 · doi:10.1016/j.amc.2003.10.015
[23] Liu, M.; Cao, W.; Fan, Z., Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation, J. Comput. Math. Appl., 170, 2, 255-268, 2004 · Zbl 1059.65006 · doi:10.1016/j.cam.2004.01.040
[24] Zhang, H.; Gan, S.; Hu, L., The split-step backward-Ruler method for linear stochastic delay differential equations, J. Comput. Appl. Math., 205, 558-568, 2009 · Zbl 1183.65007 · doi:10.1016/j.cam.2008.08.032
[25] Guo, Q.; Mao, X.; Yue, R., The truncated Euler-Maruyama method for stochastic differential delay equations, Numer. Algor., 78, 599-624, 2018 · Zbl 1414.60043 · doi:10.1007/s11075-017-0391-0
[26] Guglielmi, N., On the asymptotic stability properties of Runge-Kutta methods for delay differential equations, Numer. Math., 77, 467-485, 1997 · Zbl 0885.65092 · doi:10.1007/s002110050296
[27] Guglielmi, N., Delay dependent stability regions of \(\theta \)-methods for delay differential equations, IMA J. Numer. Anal., 18, 399-418, 1998 · Zbl 0909.65050 · doi:10.1093/imanum/18.3.399
[28] Guglielmi, N.; Hairer, E., Geometric proofs of numerical stability for delay equations, IMA J. Numer. Anal., 21, 439-450, 2001 · Zbl 0976.65077 · doi:10.1093/imanum/21.1.439
[29] Appleby, J.; Mao, X.; Riedle, M., Geometric Brownian motion with delay: means square characterisation, Proc. Amer. Math. Soc., 137, 339-348, 2009 · Zbl 1156.60045 · doi:10.1090/S0002-9939-08-09490-2
[30] Huang, C.; Gan, S.; Wang, D., Delay-dependent stability analysis of numerical methods for stochastic delay differential equations, J. Comput. Appl. Math., 236, 3514-3527, 2012 · Zbl 1246.65013 · doi:10.1016/j.cam.2012.03.003
[31] Burrage, K.; Tian, T., Predictor-corrector methods of Runge-Kutta type for stochastic differential equations, SIAM J. Numer. Anal., 40, 1516-1537, 2002 · Zbl 1026.60075 · doi:10.1137/S0036142900372677
[32] Burrage, K.; Burrage, PM, Order conditions of stochastic Runge-Kutta methods by B-series, SIAM J. Numer. Anal., 38, 5, 1626-1646, 2000 · Zbl 0983.65006 · doi:10.1137/S0036142999363206
[33] Burrage, K.; Burrage, PM, High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Appl. Numer. Math., 22, 81-101, 1996 · Zbl 0868.65101 · doi:10.1016/S0168-9274(96)00027-X
[34] Liberati, B.; Platen, E., Strong predictor-corrector euler methods for stochastic differential equations, Stoch. Dynam., 8, 3, 561-581, 2008 · Zbl 1158.60031 · doi:10.1142/S0219493708002457
[35] Niu, Y.; Zhang, C.; Burrage, K., Strong predictor-corrector approximation for stochastic delay differential equations, J. Comput. Math., 33, 6, 587-605, 2015 · Zbl 1349.65034 · doi:10.4208/jcm.1507-m4505
[36] Buckwar, E., Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math., 125, 1, 297-307, 2000 · Zbl 0971.65004 · doi:10.1016/S0377-0427(00)00475-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.