×

An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature. (English) Zbl 1532.76121

Summary: An alternative formulation is proposed for deriving depth-integrated equations for gravity-driven granular avalanches over a non-trivial topography with small curvature. The coordinate system of F. Bouchut and M. Westdickenberg [Commun. Math. Sci. 2, No. 3, 359–389 (2004; Zbl 1084.76012)] is combined with the unified coordinate (UC) method, so that it can evolve in accordance with the entrainment-deposition processes at the basal surface. The resultant mass and momentum equations are formulated as a conservation system of the Cartesian components of the conservative physical variables. The motion of the flows is driven by the basal topography-induced pressure, pressure gradient, and resisted by the basal friction. The best benefit of this formulation is that it greatly simplifies the computation of the varying coordinate orientations. The features and advantages of this formulation are illustrated by the sliding-mass examples where we simulate the motion of a finite mass of granular material sliding down an inclined chute, running through a transition zone, and being deposited onto a horizontal plane.

MSC:

76T25 Granular flows

Citations:

Zbl 1084.76012
Full Text: DOI

References:

[1] Aradian, A.; Raphaël, E.; de Gennes, P-G, Surface flows of granular materials: a short introduction to some recent models, C. R. Phys., 3, 187-196 (2002)
[2] Bonamy, D.; Daviaud, F.; Laurent, L.; Mills, P., Texture of granular surface flows: experimental investigation and biphasic non-local model, Granular Matter, 4, 183-190 (2003) · Zbl 1049.76617
[3] Bouchaud, J-P; Cates, ME; Ravi Prakash, J.; Edwards, SF, A model for the dynamics of sandpile surfaces, J. Phys. I (France), 4, 1383-1410 (1994)
[4] Bouchut, F.; Fernándes-Nieto, ED; Mangeney, A.; Lagrée, PY, On new erosion models of Savage-Hutter type for avalanches, Acta Mech., 199, 181-208 (2008) · Zbl 1152.76053
[5] Bouchut, F.; Westdickenberg, M., Gravity driven shallow water models for arbitrary topography, Commun. Math. Sci., 2, 359-389 (2004) · Zbl 1084.76012
[6] Boutreux, T.; Raphaël, E.; de Gennes, P-G, Surface flows of granular materials: a modified picture for thick avalanches, Phys. Rev. E, 58, 4692-4700 (1998)
[7] Bürgmann, R.; Rosen, PA; Fielding, EJ, Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation, Annu. Rev. Earth Planet. Sci., 28, 169-209 (2000)
[8] Chang, K-J; Taboada, TA; Chan, Y-C, Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake, Geomorphology, 71, 293-309 (2005)
[9] Chen, R-F; Chang, K-J; Angelier, J.; Chan, Y-C; Deffontaines, B.; Lee, C-T; Lin, M-L, Topographical changes revealed by high-resolution airborne LiDAR data: the 1999 Tsaoling landslide induced by the Chi-Chi earthquake, Eng. Geology, 88, 160-172 (2006)
[10] Chen, H.; Lee, CF, Numerical simulation of debris flows, Can. Geotech. J., 37, 146-160 (2000)
[11] Eglit, ME; Demidov, KS, Mathematical modeling of snow entrainment in avalanche motion, Cold Reg. Sci Technol., 43, 10-23 (2005)
[12] De Toni, S.; Scotton, P., Two-dimensional mathematical and numerical model for the dynamics of granular avalanches, Cold Regions Science and Technology, 43, 36-48 (2005)
[13] Gray, JMNT; Tai, YC; Noelle, S., Shock waves, dead-zones and particle-free regions in rapid granular free surface flows, J. Fluid Mech., 491, 161-181 (2003) · Zbl 1063.76655
[14] Gray, JMNT; Wieland, M.; Hutter, K., Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. London. A, 455, 1841-1874 (1999) · Zbl 0951.76091
[15] Greve, R.; Koch, T.; Hutter, K., Unconfined flow of granular avalanches along a partly curved surface. I: theory, Proc. R. Soc. London. A, 445, 399-413 (1994) · Zbl 0807.76006
[16] Grigorian, SS; Ostroumov, AV (1977)
[17] Hui, WH, A unified coordinates approach to computational fluid dynamics, J. Comp. Applied Math., 163, 15-28 (2004) · Zbl 1107.76370
[18] Hui, WH, The unified coordinate system in computational fluid dynamics, Commun. Comput. Phys., 2, 577-610 (2007)
[19] Hui, WH; Koudriakov, S., Computation of the shallow water equations using the unified coordinates, SIAM J. Sci. Comput., 23, 1615-1654 (2002) · Zbl 1067.76011
[20] Hui, WH; Li, PY; Li, ZW, A unified coordinate system for solving the two-dimensional euler equations, J. Comput. Phys., 153, 596-637 (1999) · Zbl 0969.76061
[21] Hutter, K.; Koch, T., Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions, Phil. Trans. R. Soc. A, 334, 93-138 (1991)
[22] Hutter, K.; Wang, Y.; Pudasaini, SP, The Savage-Hutter avalanche model: how far can it be pushed?, Phil. Trans. R. Soc. A, 363, 1507-1528 (2005) · Zbl 1152.86301
[23] Iverson, RM; Denlinger, R., Flow of variably fluidized granular massed across three-dimensional terrain. 1. Coulomb mixture theory, J. Geophys. Res., 106, 537-552 (2001)
[24] Jenkins, JT; Savage, SB, A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles, J. Fluid Mech., 130, 187-202 (1983) · Zbl 0523.76001
[25] Jiang, G-S; Tadmor, E., Non-oscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM. J. Sci. Comp., 19, 1892-1917 (1998) · Zbl 0914.65095
[26] Koch, T.; Greve, R.; Hutter, K., Unconfined flow of granular avalanches along a partly curved surface. II: experiments and numerical computations, Proc. R. Soc. London. A, 445, 415-435 (1994) · Zbl 0825.76573
[27] Kuo, CY; Tai, YC; Bouchut, F.; Mangeney, A.; Pelanti, M.; Chen, RF; Chang, KJ, Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography, Eng. Geology, 104, 181-189 (2009)
[28] Le, L.; Pitman, EB, A model for granular flows over an erodible surface, SIAM J. Appl. Math., 70, 1407-1427 (2009) · Zbl 1426.76715
[29] LeVeque, RJ; Shyue, KM, One-dimensional front tracking based on high resolution wave propagation methods, SIAM J. Sci. Comput., 16, 348-377 (1995) · Zbl 0824.65094
[30] Liu, Y.; Shu, C-W; Tadmor, E.; Zhang, M., Non-oscillatory hierarchical reconstruction for central and finite volume schemes, Commun. Comput. Phys., 2, 933-963 (2007) · Zbl 1164.65456
[31] Luca, I.; Hutter, K.; Tai, YC; Kuo, CY, A hierarchy of avalanche models on arbitrary topography, Acta Mech., 205, 121-149 (2009) · Zbl 1167.74031
[32] Luca, I.; Tai, YC; Kuo, CY, Non-Cartesian, topography based avalanche equations and approximations of gravity driven flows of ideal and viscous fluids, Math. Mod. Meth. Appl. Sci., 19, 127-171 (2008) · Zbl 1156.76008
[33] Naaim, M.; Faug, T.; Naaim-Bouvet, F., Dry granular flow modeling including erosion and deposition, Surv. Geophys., 24, 569-585 (2003)
[34] Pin, FD; Idelsohn, S.; Oñate, E.; Aubry, R., The ALE/lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid-object interactions, Comput. Fluids, 36, 27-38 (2007) · Zbl 1181.76095
[35] Pitman, EB; Nichita, CC; Patra, AK; Bauer, AC; Bursik, M.; Weber, A., A model of granular flows over an erodible surface, Discrete Contin. Dynam. Syst.-Series B, 3, 589-599 (2003) · Zbl 1134.86300
[36] Pouliquen, O., Scaling laws in granular flows down rough inclined planes, Phys. Fluids, 11, 542-548 (1999) · Zbl 1147.76477
[37] Pudasaini, SP; Hsiau, SS; Wang, Y.; Hutter, K., Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions, Phys. Fluids, 17, 093301-1-093301-10 (2005) · Zbl 1187.76431
[38] Pudasaini, SP; Hutter, K., Rapid shear flows of dry granular masses down curved and twisted channels, J. Fluid Mech., 495, 193-208 (2003) · Zbl 1054.76083
[39] Pudasaini, SP; Hutter, K.; Hsiau, SS; Tai, SC; Wang, Y.; Katzenbach, R., Rapid flow of dry granular materials down inclined chutes impinging on rigid walls, Phys. Fluids, 19, 053302-1-053302-17 (2007) · Zbl 1146.76507
[40] Pudasaini, SP; Wang, Y.; Hutter, K., Rapid motions of free-surface avalanches down curved and twisted channels and their numerical simulations, Phil. Trans. R. Soc. A, 363, 1551-1571 (2005) · Zbl 1152.86303
[41] Pudasaini, SP; Hutter, K., Avalanche Dynamics. (2007), Berlin/Heidelberg: Springer Verlag, Berlin/Heidelberg
[42] Pudasaini, SP; Wang, Y.; Sheng, LT; Hsiau, SS; Hutter, K.; Katzenbach, R., Avalanching granular flows down curved and twisted channels: theoretical and experimental results, Phys. Fluids, 20, 073302-1-073302-11 (2008) · Zbl 1182.76614
[43] Rajchenbach, J., Granular flows, Adv. Phys., 49, 229-256 (2000)
[44] Rericha, EC; Bizon, C.; Shattuck, MD; Swinney, HL, Shocks in supersonic sand, Phys. Rev. Lett., 88, 014302-1-014302-4 (2002)
[45] Savage, SB; Hutter, K., The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215 (1989) · Zbl 0659.76044
[46] Sovilla, B.; Bartelt, P., Observations and modelling of snow avalanche entrainment, Nat. Hazards Earth Syst. Sci., 2, 169-179 (2002)
[47] Sovilla, B.; Margreth, S.; Bartelt, P., On snow entrainment in avalanche dynamics calculations, Cold Reg. Sci Technol., 47, 69-79 (2007)
[48] Tai, YC; Kuo, CY, A new model of granular flows over general topography with erosion and deposition, Acta Mech., 199, 71-96 (2008) · Zbl 1148.76058
[49] Tai, YC; Lin, YC, A focused view of the behavior of granular flows down a confined inclined chute into horizontal run-out zone, Phys. Fluids, 20, 123302-1-123302-12 (2008) · Zbl 1182.76741
[50] Tai, YC; Noelle, S.; Gray, JMNT; Hutter, K., Shock-capturing and front tracking methods for granular avalanches, J. Comput. Phys., 175, 269-301 (2002) · Zbl 1168.76356
[51] Wang, Y.; Pudasaini, SP; Hutter, K., The Savage-Hutter theory: a system of partial differential equations for avalanche flows of snow, debris and mud, J. App. Math. Mech., 84, 507-527 (2004) · Zbl 1149.74323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.