×

The loop cohomology of a space with the polynomial cohomology algebra. (English) Zbl 1380.55007

Let \(X\) (resp. \(\Omega X\)) be a simply connected topological space (resp. the loop space of \(X\)). The aim of this paper is to calculate the algebra \(H^{*}(\Omega X; \; \mathbb{Z}/2\mathbb{Z})\) when the algebra \(H^{*}(X; \; \mathbb{Z}/2\mathbb{Z})\) is polynomial, by means of the Steenrod operation \(Sq_{1}\) on \(H^{*}(X; \; \mathbb{Z}/2\mathbb{Z})\) (compare with [A. Borel, Ann. Math. (2) 57, 115–207 (1953; Zbl 0052.40001)]).
The author gives also a criterion for \(H^{*}(\Omega X; \; \mathbb{Z}/2\mathbb{Z})\) to be an exterior algebra. The method used is based on the filtered Hirsch model for \(X\) (see: [S. Saneblidze, Trans. A. Razmadze Math. Inst. 170, No. 1, 114–136 (2016; Zbl 1385.55011)]).

MSC:

55P35 Loop spaces
55N07 Steenrod-Sitnikov homologies
55R20 Spectral sequences and homology of fiber spaces in algebraic topology

References:

[1] Switzer, R. M., Algebraic Topology -Homotopy and Homology (1975), Springer-Verlag · Zbl 0305.55001
[2] Mosher, R. E.; Tangora, M. C., Cohomology Operations and Applications in Homotopy Theory (1968), Harper and Row Publ · Zbl 0153.53302
[3] McCleary, J., A User’S Guide To Spectral Sequences (2001), Cambridge University Press · Zbl 0959.55001
[4] Serre, J.-P., Homologie singulière des espaces fibrés. Applications, Ann. of Math., 54, 425-505 (1951) · Zbl 0045.26003
[5] Husemoller, D.; Moore, J. C.; Stasheff, J., Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra, 5, 113-185 (1974) · Zbl 0364.18008
[6] Prouté, A., Un contre-example à la géométricité du shuffle-coproduit de la cobar-construction, C. R. Acad. Sci. Paris I, 298, 31-34 (1984) · Zbl 0567.55014
[7] Saneblidze, S., Filtered Hirsch algebras, Trans. R.M.I., 170, 114-136 (2016) · Zbl 1385.55011
[8] Tate, J., Homology of noetherian rings and local rings, Illinois J. Math., 1, 14-27 (1957) · Zbl 0079.05501
[9] Jozefiak, J. T., Tate resolutions for commutative graded algebras over a local ring, Fund. Math., 74, 209-231 (1972) · Zbl 0236.13012
[10] Halperin, S.; Stasheff, J., Obstructions to homotopy equivalences, Adv. Math., 32, 233-279 (1979) · Zbl 0408.55009
[11] Notbohm, D., (James, I. M., Classifying Spaces of Compact Lie Groups and Finite Loop Spaces. Classifying Spaces of Compact Lie Groups and Finite Loop Spaces, Handbook of Algebraic Topology (1995), North-Holland), (Chapter 21) · Zbl 0864.55013
[12] Andersen, K. K.S.; Grodal, J., The steenrod problem of realizing polynomial cohomology rings, J. Topol., 1, 460-747 (2008) · Zbl 1160.55001
[13] Saneblidze, S., On the homotopy classification of maps, J. Homotopy Relat. Struct., 4, 347-357 (2009) · Zbl 1191.55011
[14] Baues, H. J., The cobar construction as a Hopf algebra, Invent. Math., 132, 467-489 (1998) · Zbl 0912.55015
[15] Kadeishvili, T.; Saneblidze, S., A cubical model of a fibration, J. Pure Appl. Algebra, 196, 203-228 (2005) · Zbl 1069.55011
[16] Felix, Y.; Halperin, S.; Thomas, J.-C., Adams’ cobar equivalence, Trans. Amer. Math. Soc., 329, 531-549 (1992) · Zbl 0765.55005
[17] Kadeishvili, T., On the homology theory of fibre spaces, Russian Math. Surveys, 35, 131-138 (1980) · Zbl 0521.55015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.