×

Derived \(A\)-infinity algebras and their homotopies. (English) Zbl 1439.16009

Summary: The notion of a derived \(A\)-infinity algebra, considered by Sagave, is a generalization of the classical notion of \(A\)-infinity algebra, relevant to the case where one works over a commutative ring rather than a field. We initiate a study of the homotopy theory of these algebras, by introducing a hierarchy of notions of homotopy between the morphisms of such algebras. We define \(r\)-homotopy, for non-negative integers \(r\), in such a way that \(r\)-homotopy equivalences underlie \(E_r\)-quasi-isomorphisms, defined via an associated spectral sequence. We study the special case of twisted complexes (also known as multicomplexes) first since it is of independent interest and this simpler case clearly exemplifies the structure we study. We also give two new interpretations of derived \(A\)-infinity algebras as \(A\)-infinity algebras in twisted complexes and as \(A\)-infinity algebras in split filtered cochain complexes.

MSC:

16E45 Differential graded algebras and applications (associative algebraic aspects)
18G50 Nonabelian homological algebra (category-theoretic aspects)
16T15 Coalgebras and comodules; corings
18D20 Enriched categories (over closed or monoidal categories)
18M60 Operads (general)

References:

[1] Aponte, C.; Livernet, M.; Robertson, M.; Whitehouse, S.; Ziegenhagen, S., Representations of derived A-infinity algebras, Contemp. Math., 641, 1-28 (2015) · Zbl 1346.18012
[2] Boardman, J. M., Conditionally convergent spectral sequences, (Homotopy Invariant Algebraic Structures. Homotopy Invariant Algebraic Structures, Baltimore, MD, 1998. Homotopy Invariant Algebraic Structures. Homotopy Invariant Algebraic Structures, Baltimore, MD, 1998, Contemp. Math., vol. 239 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 49-84 · Zbl 0947.55020
[3] Borceux, F., Handbook of Categorical Algebra. 2 Categories and Structures, Encycl. Math. Appl., vol. 51 (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0843.18001
[4] Cartan, H.; Eilenberg, S., Homological Algebra (1956), Princeton University Press: Princeton University Press Princeton, N. J. · Zbl 0075.24305
[5] Cirici, J.; Guillén, F., \(E_1\)-formality of complex algebraic varieties, Algebraic Geom. Topol., 14, 5, 3049-3079 (2014) · Zbl 1301.32019
[6] Cirici, J.; Guillén, F., Homotopy theory of mixed Hodge complexes, Tohoku Math. J., 68, 3, 349-375 (2016) · Zbl 1359.55013
[7] Dwyer, W. G.; Hirschhorn, P. S.; Kan, D. M.; Smith, J. H., Homotopy Limit Functors on Model Categories and Homotopical Categories, Math. Surv. Monogr., vol. 113 (2004), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1072.18012
[8] Fresse, B., Modules over Operads and Functors, Lect. Notes Math., vol. 1967 (2009), Springer-Verlag: Springer-Verlag Berlin · Zbl 1178.18007
[9] Gugenheim, V. K.A. M.; May, J. P., On the Theory and Applications of Differential Torsion Products, Mem. Am. Math. Soc., vol. 142 (1974), American Mathematical Society: American Mathematical Society Providence, R.I. · Zbl 0292.55019
[10] Guillén, F.; Navarro, V.; Pascual, P.; Roig, A., A Cartan-Eilenberg approach to homotopical algebra, J. Pure Appl. Algebra, 214, 2, 140-164 (2010) · Zbl 1198.18006
[11] Grandis, M., On the homotopy structure of strongly homotopy associative algebras, J. Pure Appl. Algebra, 134, 1, 15-81 (1999) · Zbl 0923.18007
[12] Herscovich, E., Spectral sequences associated to deformations, J. Homotopy Relat. Struct., 1-36 (2016)
[13] Huebschmann, J., Minimal free multi-models for chain algebras, Georgian Math. J., 11, 4, 733-752 (2004) · Zbl 1076.18009
[14] Hurtubise, D. E., Multicomplexes and spectral sequences, J. Algebra Appl., 9, 4, 519-530 (2010) · Zbl 1210.18015
[15] Kadeišvili, T. V., On the theory of homology of fiber spaces, International Topology Conference. International Topology Conference, Moscow State Univ., Moscow, 1979. International Topology Conference. International Topology Conference, Moscow State Univ., Moscow, 1979, Usp. Mat. Nauk, 35, 3(213), 183-188 (1980)
[16] Keller, B., Introduction to \(A\)-infinity algebras and modules, Homol. Homotopy Appl., 3, 1, 1-35 (2001) · Zbl 0989.18009
[17] Kamps, K. H.; Porter, T., Abstract Homotopy and Simple Homotopy Theory (1997), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0890.55014
[18] Lapin, S. V., Differential perturbations and \(D_\infty \)-differential modules, Mat. Sb., 192, 11, 55-76 (2001) · Zbl 1026.55018
[19] Lapin, S. V., \(D_\infty \)-differential \(A_\infty \)-algebras and spectral sequences, Mat. Sb., 193, 1, 119-142 (2002) · Zbl 1026.55023
[20] Lapin, S. V., \(D_\infty \)-differentials and \(A_\infty \)-structures in spectral sequences, Sovrem. Mat. Prilozh., 1, 56-91 (2003)
[21] Lapin, S. V., Multiplicative \(A_\infty \)-structure in the terms of spectral sequences of fibrations, Fundam. Prikl. Mat., 14, 6, 141-175 (2008)
[22] Lefèvre-Hasegawa, K., Sur les A-infinity-catégories (2003), Université Paris 7, Thèse de doctorat
[23] Livernet, M.; Roitzheim, C.; Whitehouse, S., Derived \(A_\infty \)-algebras in an operadic context, Algebraic Geom. Topol., 13, 1, 409-440 (2013) · Zbl 1268.18006
[24] Loday, J. L.; Vallette, B., Algebraic Operads, Grundlehren Math. Wiss., vol. 346 (2012), Springer: Springer Heidelberg · Zbl 1260.18001
[25] Maes, J., Derived Homotopy Algebras (2016), Universidad de Sevilla, PhD thesis
[26] Meyer, J-P., Acyclic models for multicomplexes, Duke Math. J., 45, 1, 67-85 (1978) · Zbl 0374.55020
[27] Paranjape, K. H., Some spectral sequences for filtered complexes and applications, J. Algebra, 186, 3, 793-806 (1996) · Zbl 0876.18007
[28] Prouté, A., \(A_\infty \)-structures. Modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations, Repr. Theory Appl. Categ., 21, 1-99 (2011) · Zbl 1245.55007
[29] Riehl, E., Categorical Homotopy Theory, Categorical Homotopy Theory (2014), Cambridge University Press · Zbl 1317.18001
[30] Sagave, S., DG-algebras and derived \(A_\infty \)-algebras, J. Reine Angew. Math., 639, 73-105 (2010) · Zbl 1209.18011
[31] Saneblidze, S., On derived categories and derived functors, Extr. Math., 22, 3, 315-324 (2007) · Zbl 1154.18008
[32] Wall, C. T.C., Resolutions for extensions of groups, Proc. Camb. Philos. Soc., 57, 251-255 (1961) · Zbl 0106.24903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.