×

Generating function of monodromy symplectomorphism for \(2 \times 2\) Fuchsian systems and its WKB expansion. (English) Zbl 1531.34082

Summary: We study the WKB expansion of \(2\times 2\) system of linear differential equations with Fuchsian singularities. The main focus is on the generating function of the monodromy symplectomorphism which, according to a recent paper [M. Bertola and D. Korotkin, Commun. Math. Phys. 388, No. 1, 245–290 (2021; Zbl 1537.37078)], is closely related to the Jimbo-Miwa tau-function. We compute the first three terms of the WKB expansion of the generating function and establish the link to the Bergman tau-function.

MSC:

34M60 Singular perturbation problems for ordinary differential equations in the complex domain (complex WKB, turning points, steepest descent)
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
53D22 Canonical transformations in symplectic and contact geometry

Citations:

Zbl 1537.37078

References:

[1] A.Y. Alekseev and A.Z. Malkin, The hyperbolic moduli space of flat connections and the isomorphism of symplectic multiplicity spaces, Duke Math. J. 93 (1998), 575-595. https://doi.org/10.1215/S0012-7094-98-09320-6 · Zbl 0978.53132 · doi:10.1215/S0012-7094-98-09320-6
[2] D.Allegretti and T.Bridgeland, The monodromy of meromorphic projective structures, Trans. Amer. Math. Soc. 373 (2020), 6321-6367. https://doi.org/10.1090/tran/8093 · Zbl 1461.30099 · doi:10.1090/tran/8093
[3] D.Allegretti, Voros symbols as cluster coordinates, J. Topol. 12 (2019), 1031-1068. https://doi.org/10.1112/topo.12106 · Zbl 1436.13043 · doi:10.1112/topo.12106
[4] O.Babelon, D.Bernard, and M.Talon, Introduction to Classical Integrable Systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511535024 · Zbl 1045.37033 · doi:10.1017/CBO9780511535024
[5] M.Bershtein, P.Gavrylenko, and A.Grassi, Quantum spectral problems and isomonodromic deformations, Comm. Math. Phys. 393 (2022), 347-418. https://doi.org/10.1007/s00220-022-04369-y · Zbl 1507.81089 · doi:10.1007/s00220-022-04369-y
[6] M.Bertola and D.Korotkin, Spaces of Abelian differentials and Hitchin’s spectral covers, Int. Math. Res. Not. IMRN 2021 (2021), 11246-11269. https://doi.org/10.1093/imrn/rnz142 · Zbl 1485.14044 · doi:10.1093/imrn/rnz142
[7] M.Bertola and D.Korotkin, Hodge and Prym tau functions, Strebel differentials and combinatorial model of \(M_{g,n}\), Commun. Math. Phys. 378 (2020), 1279-1341. https://doi.org/10.1007/s00220-020-03819-9 · Zbl 1447.30003 · doi:10.1007/s00220-020-03819-9
[8] M.Bertola and D.A. Korotkin, WKB expansion for a Yang-Yang generating function and the Bergman tau function, Theor. Math. Phys.206 (2021), 258-295. https://doi.org/10.1134/S0040577921030028 · Zbl 1504.14061 · doi:10.1134/S0040577921030028
[9] M.Bertola and D.Korotkin, Extended Goldman symplectic structure in fock-goncharov coordinates, J. Diff. Geom., to appear (2021), https://arxiv.org/abs/1910.06744. · Zbl 1528.53076
[10] M.Bertola and D.Korotkin, Tau-functions and monodromy symplectomorphisms, Commun. Math. Phys. 388 (2021), 245-290. https://doi.org/10.1007/s00220-021-04224-6 · Zbl 1537.37078 · doi:10.1007/s00220-021-04224-6
[11] G.Bonelli, O.Lisovyy, K.Maruyoshi, A.Sciarappa, and A.Tanzini, On Painlevé/gauge theory correspondence, Lett. Math. Phys. 107 (2017), 2359-2417. https://doi.org/10.1007/s11005-017-0983-6 · Zbl 1380.34130 · doi:10.1007/s11005-017-0983-6
[12] T.Bridgeland, Riemann-Hilbert problems from Donaldson-Thomas theory, Invent. Math. 216 (2019), 69-124. https://doi.org/10.1007/s00222-018-0843-8 · Zbl 1423.14309 · doi:10.1007/s00222-018-0843-8
[13] T.Bridgeland and D.Masoero, On the monodromy of the deformed cubic oscillator, Math. Annalen, 385 (2022), 193-258. https://doi.org/10.1007/s00208-021-02337-w · Zbl 1514.14066 · doi:10.1007/s00208-021-02337-w
[14] T.Bridgeland and I.Smith, Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 155-278. https://doi.org/10.1007/s10240-014-0066-5 · Zbl 1328.14025 · doi:10.1007/s10240-014-0066-5
[15] I.Coman, P.Longhi, and J.Teschner, From quantum curves to topological string partition functions II, Comm. Math. Phys. 399 (2023), 1501-1548. https://doi.org/10.1007/s00220-022-04579-4 · Zbl 1522.81336 · doi:10.1007/s00220-022-04579-4
[16] F.Del Monte, H.Desiraju, and P.Gavrylenko, Isomonodromic tau functions on a torus as Fredholm determinants, and charged partitions, Comm. Math. Phys. 398 (2023), 1-56. https://doi.org/10.1007/s00220-022-04458-y · Zbl 1519.81443 · doi:10.1007/s00220-022-04458-y
[17] F.Del Monte, H.Desiraju and P.Gavrylenko, Monodromy dependence and symplectic geometry of isomonodromic tau functions on the torus, preprint, https://arxiv.org/abs/2211.01139. · Zbl 1542.37053
[18] H.Dillinger, E.Delabaere, and F.Pham, Résurgence de Voros et périodes des courbes hyperelliptiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 163-199. https://doi.org/10.5802/aif.1326 · Zbl 0766.34032 · doi:10.5802/aif.1326
[19] B.Dubrovin, Integrable systems and Riemann surfaces, Lecture Notes, 2009. Available from: https://people.sissa.it/ dubrovin/rsnleq_web.pdf
[20] J.D. Fay, Theta functions on Riemann surfaces, 352, Springer, 2006. · Zbl 0281.30013
[21] V.Fock and A.Goncharov, Moduli spaces of local systems and higher teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211. https://doi.org/10.1007/s10240-006-0039-4 · Zbl 1099.14025 · doi:10.1007/s10240-006-0039-4
[22] D.Gaiotto, G.W. Moore, and A.Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239-403. https://doi.org/10.1016/j.aim.2012.09.027 · Zbl 1358.81150 · doi:10.1016/j.aim.2012.09.027
[23] O.Gamayun, N.Iorgov, and O.Lisovyy, Conformal field theory of Painlevé VI, J. High Energ. Phys. 2012 (2012), 38. https://doi.org/10.1007/JHEP10(2012)038 · Zbl 1397.81307 · doi:10.1007/JHEP10(2012)038
[24] P.Gavrylenko and O.Lisovyy, Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions, Commun. Math. Phys. 363 (2018), 1-58. https://doi.org/10.1007/s00220-018-3224-7 · Zbl 1414.34072 · doi:10.1007/s00220-018-3224-7
[25] P.Gavrylenko, A.Marshakov, and A.Stoyan, Irregular conformal blocks, Painlevé III and the blow-up equations, J. High Energ. Phys. 2020 (2020), 125. https://doi.org/10.1007/JHEP12(2020)125 · doi:10.1007/JHEP12(2020)125
[26] W.M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), 200-225. https://doi.org/10.1016/0001-8708(84)90040-9 · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[27] N.Hitchin, Frobenius manifolds, Gauge theory and symplectic geometry, (Eds. J.Hurtubise, F.Lalonde, and G.Sabidussi), Nato Science Series C, 488, Springer, 1997, 69-112. https://doi.org/10.1007/978-94-017-1667-3_3 · Zbl 0867.53027 · doi:10.1007/978-94-017-1667-3_3
[28] N.Iorgov, O.Lisovyy, and J.Teschner, Isomonodromic tau-functions from Liouville conformal blocks, Commun. Math. Phys. 336 (2015), 671-694. https://doi.org/10.1007/s00220-014-2245-0 · Zbl 1311.30029 · doi:10.1007/s00220-014-2245-0
[29] N.Iorgov, O.Lisovyy, and Y.Tykhyy, Painlevé VI connection problem and monodromy of c=1 conformal blocks, J. High Energ. Phys. 2013 (2013), 029. https://doi.org/10.1007/JHEP12(2013)029 · Zbl 1342.81500 · doi:10.1007/JHEP12(2013)029
[30] A.R. Its, O.Lisovyy, and A.Prokhorov, Monodromy dependence and connection formulae for isomonodromic tau functions, Duke Math. J. 167 (2018), 1347-1432. https://doi.org/10.1215/00127094-2017-0055 · Zbl 1396.33039 · doi:10.1215/00127094-2017-0055
[31] A.Its, O.Lisovyy, and Y.Tykhyy, Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks, Int. Math. Res. Not. IMRN 2015 (2015), 8903-8924. https://doi.org/10.1093/imrn/rnu209 · Zbl 1329.34140 · doi:10.1093/imrn/rnu209
[32] A.Its and A.Prokhorov, Connection problem for the tau-function of the sine-Gordon reduction of Painlevé-iii equation via the Riemann-Hilbert approach, Int. Math. Res. Not. IMRN 2016 (2016), 6856-6883. https://doi.org/10.1093/imrn/rnv375 · Zbl 1404.34104 · doi:10.1093/imrn/rnv375
[33] K.Iwaki, 2-Parameter τ-function for the first Painlevé equation: Topological recursion and direct monodromy problem via exact WKB analysis, Commun. Math. Phys. 377 (2020), 1047-1098. https://doi.org/10.1007/s00220-020-03769-2 · Zbl 1448.81324 · doi:10.1007/s00220-020-03769-2
[34] S.Jeong and N.Nekrasov, Riemann-Hilbert correspondence and blown up surface defects, J. High Energ. Phys. 2020 (2020), 6. https://doi.org/10.1007/JHEP12(2020)006 · Zbl 1457.81057 · doi:10.1007/JHEP12(2020)006
[35] M.Jimbo, T.Miwa, and K.Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function, Physica D: Nonlinear Phenomena 2 (1981), 306-352. https://doi.org/10.1016/0167-2789(81)90013-0 · Zbl 1194.34167 · doi:10.1016/0167-2789(81)90013-0
[36] C.Kalla and D.Korotkin, Baker-Akhiezer spinor kernel and tau-functions on moduli spaces of meromorphic differentials, Comm. Math. Physics 331 (2014), 1191-1235. https://doi.org/10.1007/s00220-014-2081-2 · Zbl 1295.30096 · doi:10.1007/s00220-014-2081-2
[37] T.Kawai and Y.Takei, Algebraic Analysis of Singular Perturbation Theory, 227, Amer. Math. Soc., Providence, RI, 2005. https://doi.org/10.1090/mmono/227 · Zbl 1100.34004 · doi:10.1090/mmono/227
[38] A.Kokotov and D.Korotkin, Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray-Singer formula, J. Differential Geom. 82 (2009), 35-100. https://doi.org/10.4310/jdg/1242134368 · Zbl 1175.30041 · doi:10.4310/jdg/1242134368
[39] D.Korotkin, Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices, Math. Ann. 329 (2004), 335-364. https://doi.org/10.1007/s00208-004-0528-z · Zbl 1059.32002 · doi:10.1007/s00208-004-0528-z
[40] D.Korotkin and H.Samtleben, Quantization of coset space sigma models coupled to two-dimensional gravity, Commun. Math. Phys. 190 (1997), 411-457. https://doi.org/10.1007/s002200050247 · Zbl 0910.53051 · doi:10.1007/s002200050247
[41] D.Korotkin, Bergman tau-function: From Einstein equations and Dubrovin-Frobenius manifolds to geometry of moduli spaces, Integrable Systems and Algebraic Geometry, 2, (Eds. R.Donagi and T.Shaska), LMS Lecture Notes, 459, 2020, 215-287. https://doi.org/10.1017/9781108773355.008 · Zbl 1473.30025 · doi:10.1017/9781108773355.008
[42] D.Korotkin and P.Zograf, Tau function and the Prym class, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices (Eds. A.Dzhamay, K.Maruno, and V.Pierce), Contemp. Math., 593, 2013, 241-262. https://doi.org/10.1090/conm/593/11874 · Zbl 1297.14032 · doi:10.1090/conm/593/11874
[43] N.Nekrasov, Blowups in BPS/CFT correspondence, and Painlevé VI, preprint, https://arxiv.org/abs/2007.03646.
[44] A.Voros, The return of the quadratic oscillator. The complex WKB method, Ann. IHP Phys. Théor. 39 (1983), 211-338. · Zbl 0526.34046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.