×

On some Hamiltonian properties of the isomonodromic tau functions. (English) Zbl 1408.30036

Summary: We discuss some new aspects of the theory of the Jimbo-Miwa-Ueno tau function which have come to light within the recent developments in the global asymptotic analysis of the tau functions related to the Painlevé equations. Specifically, we show that up to the total differentials the logarithmic derivatives of the Painlevé tau functions coincide with the corresponding classical action differential. This fact simplifies considerably the evaluation of the constant factors in the asymptotics of tau functions, which has been a long-standing problem of the asymptotic theory of Painlevé equations. Furthermore, we believe that this observation is yet another manifestation of L. D. Faddeev’s emphasis of the key role which the Hamiltonian aspects play in the theory of integrable system.

MSC:

30D30 Meromorphic functions of one complex variable (general theory)
34M03 Linear ordinary differential equations and systems in the complex domain

References:

[1] M. Babich, On canonical parametrization of the phase spaces of equations of isomonodromic deformations of Fuchsian systems of dimension \(2 \times 2\). Derivation of the Painlevé VI equation, Uspekhi Mat. Nauk64(1) (2009) 51-134 (Russian); English translation in Russian Math. Surveys, 64(1) (2009) 45-127. · Zbl 1180.34099
[2] Bertola, M., The dependence on the monodromy data of the isomonodromic tau function, Comm. Math. Phys.294 (2010) 539-579; arXiv:0902.4716 [nlin.SI]. · Zbl 1218.37099
[3] Boalch, P., Symplectic Manifolds and Isomonodromic Deformations, Adv. Math.163 (2001) 137-205. · Zbl 1001.53059
[4] Brézin, E. and Kazakov, V. A., Exactly solvable field theories of closed strings, Phys. Letts. B236 (1990) 144-150.
[5] T. Bothner, A. Its and A. Prokhorov, On the analysis of incomplete spectra in random matrix theory through an extension of the Jimbo-Miwa-Ueno differential, arXiv:1708.06480v1 [math-ph]. · Zbl 1447.60038
[6] Baik, J., Buckingham, R., DiFranco, J. and Its, A., Total integrals of global solutions to Painlevé II, Nonlinearity22 (2009) 1021-1061; arXiv:0810.2586 [math.CA]. · Zbl 1179.33036
[7] Douglas, M. and Shenker, S., Strings in less than one dimension, Nucl. Phys. B335 (1990) 635-654.
[8] Flaschka, H. and Newell, A. C., Monodromy- and spectrum-preserving deformations I, Comm. Math. Phys.76 (1980) 65-116. · Zbl 0439.34005
[9] Flaschka, H. and Newell, A. C., The inverse monodromy transform is a canonical transformation, in Nonlinear Problems: Present and Future (Los Alamos, N.M., 1981), , Vol. 61 (North Holland, 1982), pp. 65-91. · Zbl 0555.35107
[10] Fokas, A. S., Its, A. R., Kapaev, A. A. and Novokshenov, V. Yu., Painlevé Transcendents: The Riemann-Hilbert Approach, , Vol. 128 (AMS, Providence, RI, 2006). · Zbl 1111.34001
[11] P. Gavrylenko and O. Lisovyy, Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions (2016); arXiv:1608.00958 [math-ph]. · Zbl 1414.34072
[12] Gross, D. and Migdal, A., A nonperturbative treatment of two-dimensional quantum gravity, Nucl. Phys. B340 (1990) 333-365.
[13] Harnad, J. and Wisse, M. A., Loop algebra moment maps and Hamiltonian models for the Painlevé transcendants, Field’s Inst. Commun.7 (1993) 155-169. · Zbl 0871.58049
[14] Harnad, J. and Wisse, M. A., Moment maps to loop algebras, classical R-matrix and integrable systems, in Quantum Groups Integrable Models and Statistical Systems (World Scientific, Singapore, 1993), pp. 105-117.
[15] Its, A. and Prokhorov, A., Connection problem for the tau-function of the sine-Gordon reduction of Painlevé-III equation via the Riemann-Hilbert approach, Int. Math. Res. Not.22 (2016) 6856-6883. · Zbl 1404.34104
[16] A. Its, O. Lisovyy and A. Prokhorov, Monodromy dependence and connection formulae for isomonodromic tau functions, to appear in Duke Math. J.; arXiv:1604.03082v1 [math-ph]. · Zbl 1396.33039
[17] Iorgov, N., Lisovyy, O., Shchechkin, A. and Tykhyy, Yu., Painlevé functions and conformal blocks, Constr. Approx.39 (2014) 255-272. · Zbl 1316.34096
[18] Iorgov, N., Lisovyy, O. and Tykhyy, Yu., Painlevé VI connection problem and monodromy of \(c = 1\) conformal blocks, JHEP12 (2013) 029; arXiv:1308.4092v1 [hep-th]. · Zbl 1342.81500
[19] A. Its, O. Lisovyy and Yu. Tykhyy, Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks, Int. Math. Res. Not.18 (2015) 8903-8924; arXiv:1403.1235 [math-ph]; Phys. D2 (1981) 306-352. · Zbl 1329.34140
[20] Jimbo, M., Miwa, T. and Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I, Phys. D2 (1981) 306-352. · Zbl 1194.34167
[21] Jimbo, M. and Miwa, T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D2 (1981) 407-448. · Zbl 1194.34166
[22] Jimbo, M., Miwa, T., Môri, Y. and Sato, M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D1 (1980) 80-158. · Zbl 1194.82007
[23] Krichever, I., Isomonodromy equations on algebraic curves, cannonical transformations and Whitham equations, Moscow Math. J.2 (2002) 717-752; arXiv:hep-th/0112096. · Zbl 1044.70010
[24] Lisovyy, O. and Roussillon, J., On the connection problem for Painlevé I, J. Phys. A: Math. Theor.50 (2017) 255202. · Zbl 1383.34104
[25] Malgrange, B., Sur les déformations isomonodromiques, I. Singularités régulières, in Mathematics and Physics (Paris, 1979/1982), , Vol. 37 (Birkhäuser, Boston, MA, 1983), pp. 401-426. · Zbl 0528.32017
[26] Malgrange, B., Déformations isomonodromiques, forme de Liouville, fonction \(\tau \), Ann. Inst. Fourier54(5) (2004) 1371-1392. · Zbl 1086.34071
[27] Miwa, T., Painlevé property of monodromy preserving deformation equations and the analyticity of \(\tau \)-functions, Publ. Res. Inst. Math. Sci.17 (1981) 703-712. · Zbl 0605.34005
[28] Okamoto, K., Polynomial Hamiltonians associated with Painlevé equations, I, Proc. Japan Acad. Ser. A Math. Sci. Volume56(6) (1980) 264-268. · Zbl 0476.34010
[29] Tracy, C. A., Asymptotics of the \(\tau \)-function arising in the two-dimensional Ising model, Comm. Math. Phys.142 (1991) 297-311. · Zbl 0734.60106
[30] Tracy, C. A. and Widom, H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys.159 (1994) 151-174; hep-th/9211141. · Zbl 0789.35152
[31] Tracy, C. A. and Widom, H., Fredholm determinants, differential equations and matrix models, Comm. Math. Phys.163 (1994) 33-72; hep-th/9306042. · Zbl 0813.35110
[32] Wasow, W., Asymptotic Expansions for Ordinary Differential Equations (Dover, New York, 2002). · Zbl 0169.10903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.