×

Entanglement entropies of an interval in the free Schrödinger field theory on the half line. (English) Zbl 1531.81032

Summary: We study the entanglement entropies of an interval adjacent to the boundary of the half line for the free fermionic spinless Schrödinger field theory at finite density and zero temperature, with either Neumann or Dirichlet boundary conditions. They are finite functions of the dimensionless parameter given by the product of the Fermi momentum and the length of the interval. The entanglement entropy displays an oscillatory behaviour, differently from the case of the interval on the whole line. This behaviour is related to the Friedel oscillations of the mean particle density on the half line at the entangling point. We find analytic expressions for the expansions of the entanglement entropies in the regimes of small and large values of the dimensionless parameter. They display a remarkable agreement with the curves obtained numerically. The analysis is extended to a family of free fermionic Lifshitz models labelled by their integer Lifshitz exponent, whose parity determines the properties of the entanglement entropies. The cumulants of the local charge operator and the Schatten norms of the underlying kernels are also explored.

MSC:

81P17 Quantum entropies
81P40 Quantum coherence, entanglement, quantum correlations
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81P42 Entanglement measures, concurrencies, separability criteria

Software:

DLMF

References:

[1] P. Calabrese, J. Cardy and B. Doyon, Entanglement entropy in extended quantum systems, J. Phys. A42 (2009) 500301. · Zbl 1180.81014
[2] I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, J. Phys. A42 (2009) 504003 [arXiv:0906.1663]. · Zbl 1179.81032
[3] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A42 (2009) 504007 [arXiv:0905.2562] [INSPIRE]. · Zbl 1186.81017
[4] Eisert, J.; Cramer, M.; Plenio, MB, Area laws for the entanglement entropy — a review, Rev. Mod. Phys., 82, 277 (2010) · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[5] Rangamani, M.; Takayanagi, T., Holographic entanglement entropy, Lect. Notes Phys., 931, 1 (2017) · Zbl 1371.81011 · doi:10.1007/978-3-319-52573-0_1
[6] M. Headrick, Lectures on entanglement entropy in field theory and holography, arXiv:1907.08126 [INSPIRE].
[7] Tonni, E., An introduction to entanglement measures in conformal field theories and AdS/CFT, Springer Proc. Phys., 239, 69 (2020) · doi:10.1007/978-3-030-35473-2_2
[8] Peschel, I.; Zhao, J., On single-copy entanglement, J. Stat. Mech., 2005, P11002 (2005) · Zbl 1456.81313 · doi:10.1088/1742-5468/2005/11/P11002
[9] J. Eisert and M. Cramer, Single-copy entanglement in critical quantum spin chains, Phys. Rev. A72 (2005) 042112 [quant-ph/0506250].
[10] R. Orús, J.I. Latorre, J. Eisert and M. Cramer, Half the entanglement in critical systems is distillable from a single specimen, Phys. Rev. A73 (2006) 060303 [quant-ph/0509023] [INSPIRE].
[11] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D34 (1986) 373 [INSPIRE]. · Zbl 1222.83077
[12] Srednicki, M., Entropy and area, Phys. Rev. Lett., 71, 666 (1993) · Zbl 0972.81649 · doi:10.1103/PhysRevLett.71.666
[13] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110
[14] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, JHEP, 08, 045 (2006) · Zbl 1228.83110 · doi:10.1088/1126-6708/2006/08/045
[15] Callan, CG Jr; Wilczek, F., On geometric entropy, Phys. Lett. B, 333, 55 (1994) · doi:10.1016/0370-2693(94)91007-3
[16] Holzhey, C.; Larsen, F.; Wilczek, F., Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B, 424, 443 (1994) · Zbl 0990.81564 · doi:10.1016/0550-3213(94)90402-2
[17] Calabrese, P.; Cardy, JL, Entanglement entropy and quantum field theory, J. Stat. Mech., 0406, P06002 (2004) · Zbl 1082.82002
[18] I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett.67 (1991) 161 [INSPIRE]. · Zbl 0990.81566
[19] D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett.93 (2004) 030402 [hep-th/0312197] [INSPIRE]. · Zbl 1456.82400
[20] H. Casini, I. Salazar Landea and G. Torroba, The g-theorem and quantum information theory, JHEP10 (2016) 140 [arXiv:1607.00390] [INSPIRE]. · Zbl 1390.81094
[21] H. Casini, I. Salazar Landea and G. Torroba, Irreversibility in quantum field theories with boundaries, JHEP04 (2019) 166 [arXiv:1812.08183] [INSPIRE]. · Zbl 1415.81073
[22] J.A. Hertz, Quantum critical phenomena, Phys. Rev. B14 (1976) 1165 [INSPIRE].
[23] U. Niederer, The maximal kinematical invariance group of the free Schrödinger equation, Helv. Phys. Acta45 (1972) 802 [INSPIRE].
[24] C.R. Hagen, Scale and conformal transformations in galilean-covariant field theory, Phys. Rev. D5 (1972) 377 [INSPIRE].
[25] Henkel, M., Schrödinger invariance in strongly anisotropic critical systems, J. Statist. Phys., 75, 1023 (1994) · Zbl 0828.60095 · doi:10.1007/BF02186756
[26] Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].
[27] E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals Phys.310 (2004) 493 [cond-mat/0311466] [INSPIRE]. · Zbl 1052.81089
[28] D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett.96 (2006) 100503 [quant-ph/0504151] [INSPIRE].
[29] M.M. Wolf, Violation of the entropic area law for fermions, Phys. Rev. Lett.96 (2006) 010404 [quant-ph/0503219] [INSPIRE].
[30] E. Fradkin and J.E. Moore, Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum, Phys. Rev. Lett.97 (2006) 050404 [cond-mat/0605683] [INSPIRE].
[31] B. Hsu, M. Mulligan, E. Fradkin and E.-A. Kim, Universal entanglement entropy in 2D conformal quantum critical points, Phys. Rev. B79 (2009) 115421 [arXiv:0812.0203] [INSPIRE].
[32] E. Fradkin, Scaling of entanglement entropy at 2D quantum Lifshitz fixed points and topological fluids, J. Phys. A42 (2009) 504011 [arXiv:0906.1569] [INSPIRE]. · Zbl 1179.81028
[33] Solodukhin, SN, Entanglement entropy in non-relativistic field theories, JHEP, 04, 101 (2010) · Zbl 1272.81023 · doi:10.1007/JHEP04(2010)101
[34] H. Leschke, A.V. Sobolev and W. Spitzer, Scaling of Rényi entanglement entropies of the free Fermi-gas ground state: a rigorous proof, Phys. Rev. Lett.112 (2014) 160403 [arXiv:1312.6828].
[35] Keranen, V.; Sybesma, W.; Szepietowski, P.; Thorlacius, L., Correlation functions in theories with Lifshitz scaling, JHEP, 05, 033 (2017) · Zbl 1380.81334 · doi:10.1007/JHEP05(2017)033
[36] T. Alho, V.G.M. Puletti, R. Pourhasan and L. Thorlacius, Monopole correlation functions and holographic phases of matter in 2 + 1 dimensions, Phys. Rev. D94 (2016) 106012 [arXiv:1607.04059] [INSPIRE].
[37] M.R. Mohammadi Mozaffar and A. Mollabashi, Entanglement in Lifshitz-type quantum field theories, JHEP07 (2017) 120 [arXiv:1705.00483] [INSPIRE]. · Zbl 1380.83098
[38] Mozaffar, MRM; Mollabashi, A., Time scaling of entanglement in integrable scale-invariant theories, Phys. Rev. Res., 4, L022010 (2022) · doi:10.1103/PhysRevResearch.4.L022010
[39] Sobolev, A., Quasi-classical asymptotics for pseudodifferential operators with discontinuous symbols: Widom’s conjecture, Funct. Anal. Appl., 44, 313 (2010) · Zbl 1272.47064 · doi:10.1007/s10688-010-0042-x
[40] G. Benfatto and G. Gallavotti, Renormalization group, Princeton University Press (1995). · Zbl 0830.58038
[41] S. Sachdev, Quantum phase transitions, second edition, Cambridge University Press (2011). · Zbl 1233.82003
[42] Mintchev, M.; Pontello, D.; Sartori, A.; Tonni, E., Entanglement entropies of an interval in the free Schrödinger field theory at finite density, JHEP, 07, 120 (2022) · Zbl 1522.81520 · doi:10.1007/JHEP07(2022)120
[43] S. Pal and B. Grinstein, Heat kernel and Weyl anomaly of Schrödinger invariant theory, Phys. Rev. D96 (2017) 125001 [arXiv:1703.02987] [INSPIRE].
[44] Hason, I., Triviality of entanglement entropy in the Galilean vacuum, Phys. Lett. B, 780, 149 (2018) · Zbl 1390.81071 · doi:10.1016/j.physletb.2018.02.064
[45] Hartmann, D.; Kavanagh, K.; Vandoren, S., Entanglement entropy with Lifshitz fermions, SciPost Phys., 11, 031 (2021) · doi:10.21468/SciPostPhys.11.2.031
[46] J. Friedel, XIV. The distribution of electrons round impurities in monovalent metals, London Edinburgh Dublin Phil. Mag. J. Sci.43 (1952) 153. · Zbl 0046.45201
[47] T. Giamarchi, Quantum physics in one dimension, Oxford University Press (2003). · Zbl 1075.81001
[48] Imambekov, A.; Schmidt, TL; Glazman, LI, One-dimensional quantum liquids: beyond the Luttinger liquid paradigm, Rev. Mod. Phys., 84, 1253 (2012) · doi:10.1103/RevModPhys.84.1253
[49] Slepian, D.; Pollak, HO, Prolate spheroidal wave functions, Fourier analysis and uncertainty — I, Bell Syst. Tech. J., 40, 43 (1961) · Zbl 0184.08601 · doi:10.1002/j.1538-7305.1961.tb03976.x
[50] Landau, HJ; Pollak, HO, Prolate spheroidal wave functions, Fourier analysis and uncertainty — II, Bell Syst. Tech. J., 40, 65 (1961) · Zbl 0184.08602 · doi:10.1002/j.1538-7305.1961.tb03977.x
[51] Landau, HJ; Pollak, HO, Prolate spheroidal wave functions, Fourier analysis and uncertainty — III: the dimension of the space of essentially time- and band-limited signals, Bell Syst. Tech. J., 41, 1295 (1962) · Zbl 0184.08603 · doi:10.1002/j.1538-7305.1962.tb03279.x
[52] Slepian, D., Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: extensions to many dimensions; generalized prolate spheroidal functions, Bell Syst. Tech. J., 43, 3009 (1964) · Zbl 0184.08604 · doi:10.1002/j.1538-7305.1964.tb01037.x
[53] Slepian, D., Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., 25, 379 (1983) · Zbl 0571.94004 · doi:10.1137/1025078
[54] A. Osipov, V. Rokhlin and H. Xiao, Prolate spheroidal wave functions of order zero, Springer (2013). · Zbl 1287.65015
[55] V. Eisler and I. Peschel, Free-fermion entanglement and spheroidal functions, J. Stat. Mech.2013 (2013) P04028 [arXiv:1302.2239]. · Zbl 1456.82123
[56] Jin, B-Q; Korepin, VE, Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture, J. Statist. Phys., 116, 79 (2004) · Zbl 1142.82314 · doi:10.1023/B:JOSS.0000037230.37166.42
[57] Keating, J.; Mezzadri, F., Random matrix theory and entanglement in quantum spin chains, Commun. Math. Phys., 252, 543 (2004) · Zbl 1124.82009 · doi:10.1007/s00220-004-1188-2
[58] P. Calabrese, M. Campostrini, F. Essler and B. Nienhuis, Parity effects in the scaling of block entanglement in gapless spin chains, Phys. Rev. Lett.104 (2010) 095701 [arXiv:0911.4660] [INSPIRE].
[59] Calabrese, P.; Essler, FHL, Universal corrections to scaling for block entanglement in spin-1/2 XX chains, J. Stat. Mech., 2010, P08029 (2010)
[60] Tracy, CA; Widom, H., Level spacing distributions and the Bessel kernel, Commun. Math. Phys., 161, 289 (1994) · Zbl 0808.35145 · doi:10.1007/BF02099779
[61] O. Gamayun, N. Iorgov and O. Lisovyy, How instanton combinatorics solves Painlevé VI, V and IIIs, J. Phys. A46 (2013) 335203 [arXiv:1302.1832] [INSPIRE]. · Zbl 1282.34096
[62] G. Bonelli, O. Lisovyy, K. Maruyoshi, A. Sciarappa and A. Tanzini, On Painlevé/gauge theory correspondence, Lett. Math. Phys.107 (2017) pages 2359 [arXiv:1612.06235] [INSPIRE]. · Zbl 1380.34130
[63] Bothner, T.; Its, A.; Prokhorov, A., On the analysis of incomplete spectra in random matrix theory through an extension of the Jimbo-Miwa-Ueno differential, Adv. Math., 345, 483 (2019) · Zbl 1447.60038 · doi:10.1016/j.aim.2019.01.025
[64] O. Gamayun, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, JHEP10 (2012) 038 [Erratum ibid.10 (2012) 183] [arXiv:1207.0787] [INSPIRE]. · Zbl 1397.81307
[65] E.L. Basor and T. Ehrhardt, Asymptotic formulas for determinants of a sum of finite Toeplitz and Hankel matrices, Math. Nach.228 (2001) 5 [math.FA/9809088]. · Zbl 1047.47020
[66] E.L. Basor and T. Ehrhardt, Asymptotic formulas for the determinants of symmetric Toeplitz plus Hankel matrices, in Toeplitz matrices and singular integral equations: the Bernd Silbermann anniversary volume, A. Böttcher, I. Gohberg and P. Junghanns eds., Birkhäuser (2002), p. 61. · Zbl 1025.15011
[67] E.L. Basor and T. Ehrhardt, Determinant computations for some classes of Toeplitz-Hankel matrices, Operat. Matr. (2008) 167 [arXiv:0804.3073]. · Zbl 1198.47042
[68] Deift, P.; Its, A.; Krasovsky, I., Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities, Ann. Math., 174, 1243 (2011) · Zbl 1232.15006 · doi:10.4007/annals.2011.174.2.12
[69] Fagotti, M.; Calabrese, P., Universal parity effects in the entanglement entropy of XX chains with open boundary conditions, J. Stat. Mech., 1101, P01017 (2011) · Zbl 1456.82393
[70] I. Klich and L. Levitov, Quantum noise as an entanglement meter, Phys. Rev. Lett.102 (2009) 100502 [arXiv:0804.1377] [INSPIRE]. · Zbl 1180.81019
[71] H.F. Song, C. Flindt, S. Rachel, I. Klich and K.L. Hur, Entanglement entropy from charge statistics: exact relations for noninteracting many-body systems, Phys. Rev. B83 (2011) 161408 [arXiv:1008.5191].
[72] H.F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie and K. Le Hur, Bipartite fluctuations as a probe of many-body entanglement, Phys. Rev. B85 (2012) 035409 [arXiv:1109.1001] [INSPIRE].
[73] R. Reed and B. Simon, Methods of modern mathematical physics II: Fourier analysis, self-adjointness, Academic Press (1975). · Zbl 0308.47002
[74] Mintchev, M.; Santoni, L.; Sorba, P., Quantum transport in presence of bound states — noise power, Annalen Phys., 529, 1600274 (2017) · doi:10.1002/andp.201600274
[75] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics 2: equilibrium states. Models in quantum statistical mechanics, Springer (1996). · Zbl 0903.46066
[76] O. Bratteli and D. Robinson, Operator algebras and quantum statistical mechanics 1: C∗- and W∗-algebras. Symmetry groups. Decomposition of states, Springer (1987). · Zbl 0905.46046
[77] NIST digital library of mathematical functions, release 1.1.5, http://dlmf.nist.gov/, 15 March 2022.
[78] R.T. Powers and E. Stormer, Free states of the canonical anticommutation relations, Commun. Math. Phys.16 (1970) 1 [INSPIRE]. · Zbl 0186.28301
[79] P.M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill (1953). · Zbl 0051.40603
[80] C. Flammer, Spheroidal wave functions, Stanford University Press (1957). · Zbl 0078.05703
[81] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover (1964). · Zbl 0171.38503
[82] Moore, IC; Cada, M., Prolate spheroidal wave functions, an introduction to the slepian series and its properties, Appl. Comput. Harmon. Anal., 16, 208 (2004) · Zbl 1048.65027 · doi:10.1016/j.acha.2004.03.004
[83] Landau, HJ, The eigenvalue behavior of certain convolution equations, Trans. Amer. Math. Soc., 115, 242 (1965) · Zbl 0195.41802 · doi:10.1090/S0002-9947-1965-0199745-4
[84] A. Bonami, P. Jaming and A. Karoui, Non-asymptotic behavior of the spectrum of the sinc-kernel operator and related applications, J. Math. Phys.62 (2021) 033511 [arXiv:1804.01257]. · Zbl 1461.81040
[85] Witte, NS, Gap probabilities for double intervals in hermitian random matrix ensembles as τ-functions — spectrum singularity case, Lett. Math. Phys., 68, 139 (2004) · Zbl 1089.15023 · doi:10.1023/B:MATH.0000045556.53148.02
[86] M. Gaudin, Sur la loi limite de l’espacement des valeurs propres d’une matrice aléatoire (in French), Nucl. Phys.25 (1961) 447. · Zbl 0107.44605
[87] F.J. Dyson, Fredholm determinants and inverse scattering problems, Commun. Math. Phys.47 (1976) 171 [INSPIRE]. · Zbl 0323.33008
[88] Jimbo, M., Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci., 18, 1137 (1982) · Zbl 0535.34042 · doi:10.2977/prims/1195183300
[89] P. Forrester, Log-gases and random matrices, Princeton University Press (2010). · Zbl 1217.82003
[90] Mintchev, M.; Tonni, E., Modular Hamiltonians for the massless Dirac field in the presence of a boundary, JHEP, 03, 204 (2021) · Zbl 1461.81072 · doi:10.1007/JHEP03(2021)204
[91] N.I. Muskhelishvili, Singular integral equations: boundary problems of functions theory and their applications to mathematical physics, Springer (1977).
[92] H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav.26 (2009) 185005 [arXiv:0903.5284] [INSPIRE]. · Zbl 1176.83071
[93] R. Arias, D. Blanco, H. Casini and M. Huerta, Local temperatures and local terms in modular Hamiltonians, Phys. Rev. D95 (2017) 065005 [arXiv:1611.08517] [INSPIRE].
[94] Slepian, D., Some asymptotic expansions for prolate spheroidal wave functions, J. Math. Phys., 44, 99 (1965) · Zbl 0128.29601 · doi:10.1002/sapm196544199
[95] T. Ehrhardt, Dyson’s constants in the asymptotics of the determinants of Wiener-Hopf-Hankel operators with the sine kernel, Commun. Math. Phys.272 (2007) 683 [math.FA/0605003]. · Zbl 1135.47023
[96] Süsstrunk, R.; Ivanov, DA, Free fermions on a line: asymptotics of the entanglement entropy and entanglement spectrum from full counting statistics, EPL, 100, 60009 (2012) · doi:10.1209/0295-5075/100/60009
[97] D.A. Ivanov, A.G. Abanov and V.V. Cheianov, Counting free fermions on a line: a Fisher-Hartwig asymptotic expansion for the Toeplitz determinant in the double-scaling limit, J. Phys. A46 (2013) 085003 [arXiv:1112.2530] [INSPIRE]. · Zbl 1321.82015
[98] H. Leschke, A.V. Sobolev and W. Spitzer, Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature, J. Phys. A49 (2016) 30LT04 [arXiv:1501.03412]. · Zbl 1346.81160
[99] Leschke, H.; Sobolev, AV; Spitzer, W., Trace formulas for Wiener-Hopf operators with applications to entropies of free fermionic equilibrium states, J. Funct. Anal., 273, 1049 (2017) · Zbl 1377.47012 · doi:10.1016/j.jfa.2017.04.005
[100] H. Leschke, A.V. Sobolev and W. Spitzer, Rényi entropies of the free Fermi gas in multi-dimensional space at high temperature, arXiv:2201.11087. · Zbl 1346.81160
[101] Sakai, K.; Satoh, Y., Entanglement through conformal interfaces, JHEP, 12, 001 (2008) · Zbl 1329.81335 · doi:10.1088/1126-6708/2008/12/001
[102] Eisler, V.; Peschel, I., Entanglement in fermionic chains with interface defects, Annalen Phys., 522, 679 (2010) · Zbl 1196.81083
[103] P. Calabrese, M. Mintchev and E. Vicari, Entanglement entropy of quantum wire junctions, J. Phys. A45 (2012) 105206 [arXiv:1110.5713] [INSPIRE]. · Zbl 1252.81020
[104] I. Peschel and V. Eisler, Exact results for the entanglement across defects in critical chains, J. Phys. A45 (2012) 155301 [arXiv:1201.4104]. · Zbl 1246.82023
[105] Mintchev, M.; Tonni, E., Modular Hamiltonians for the massless Dirac field in the presence of a defect, JHEP, 03, 205 (2021) · Zbl 1461.81073 · doi:10.1007/JHEP03(2021)205
[106] Kruthoff, J.; Mahajan, R.; Murdia, C., Free fermion entanglement with a semitransparent interface: the effect of graybody factors on entanglement islands, SciPost Phys., 11, 063 (2021) · doi:10.21468/SciPostPhys.11.3.063
[107] Capizzi, L.; Murciano, S.; Calabrese, P., Rényi entropy and negativity for massless Dirac fermions at conformal interfaces and junctions, JHEP, 08, 171 (2022) · Zbl 1522.81793 · doi:10.1007/JHEP08(2022)171
[108] Calabrese, P.; Cardy, J.; Tonni, E., Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech., 0911, P11001 (2009) · Zbl 1456.81360 · doi:10.1088/1742-5468/2009/11/P11001
[109] Calabrese, P.; Cardy, J.; Tonni, E., Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech., 1101, P01021 (2011) · Zbl 1456.81361
[110] Coser, A.; Tagliacozzo, L.; Tonni, E., On Rényi entropies of disjoint intervals in conformal field theory, J. Stat. Mech., 1401, P01008 (2014) · Zbl 1456.82041 · doi:10.1088/1742-5468/2014/01/P01008
[111] A. Coser, E. Tonni and P. Calabrese, Spin structures and entanglement of two disjoint intervals in conformal field theories, J. Stat. Mech.1605 (2016) 053109 [arXiv:1511.08328] [INSPIRE]. · Zbl 1456.81057
[112] De Nobili, C.; Coser, A.; Tonni, E., Entanglement entropy and negativity of disjoint intervals in CFT: some numerical extrapolations, J. Stat. Mech., 1506, P06021 (2015) · Zbl 1456.81106 · doi:10.1088/1742-5468/2015/06/P06021
[113] Arias, RE; Casini, H.; Huerta, M.; Pontello, D., Entropy and modular Hamiltonian for a free chiral scalar in two intervals, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.125008
[114] T. Grava, A.P. Kels and E. Tonni, Entanglement of two disjoint intervals in conformal field theory and the 2D Coulomb gas on a lattice, Phys. Rev. Lett.127 (2021) 141605 [arXiv:2104.06994] [INSPIRE].
[115] H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech.0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].
[116] H. Casini and M. Huerta, Entanglement and alpha entropies for a massive scalar field in two dimensions, J. Stat. Mech.0512 (2005) P12012 [cond-mat/0511014] [INSPIRE].
[117] Daguerre, L.; Medina, R.; Solis, M.; Torroba, G., Aspects of quantum information in finite density field theory, JHEP, 03, 079 (2021) · Zbl 1461.81015 · doi:10.1007/JHEP03(2021)079
[118] G. Gallavotti, The Luttinger model: its role in the RG-theory of one dimensional many body Fermi systems, J. Statist. Phys.103 (2001) 459 [cond-mat/0008090]. · Zbl 0984.81201
[119] G. Gentile and V. Mastropietro, Renormalization group for one-dimensional fermions: a review on mathematical results, Phys. Rept.352 (2001) 273 [INSPIRE]. · Zbl 0979.82027
[120] J. Hartong, E. Kiritsis and N.A. Obers, Schrödinger invariance from Lifshitz isometries in holography and field theory, Phys. Rev. D92 (2015) 066003 [arXiv:1409.1522] [INSPIRE]. · Zbl 1343.81224
[121] Hartong, J.; Kiritsis, E.; Obers, NA, Field theory on Newton-Cartan backgrounds and symmetries of the Lifshitz vacuum, JHEP, 08, 006 (2015) · Zbl 1388.83258 · doi:10.1007/JHEP08(2015)006
[122] Hartong, J.; Obers, NA, Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry, JHEP, 07, 155 (2015) · Zbl 1388.83586 · doi:10.1007/JHEP07(2015)155
[123] Afshar, HR; Bergshoeff, EA; Mehra, A.; Parekh, P.; Rollier, B., A Schrödinger approach to Newton-Cartan and Hořava-Lifshitz gravities, JHEP, 04, 145 (2016) · Zbl 1388.83003
[124] Forrester, P., The spectrum edge of random matrix ensembles, Nucl. Phys. B, 402, 709 (1993) · Zbl 1043.82538 · doi:10.1016/0550-3213(93)90126-A
[125] K. Okamoto, Studies on the Painlevé equations: IV. Third Painlevé equation PIII, Funk. Ekvac.30 (1987) 305. · Zbl 0639.58013
[126] Dai, D.; Forrester, PJ; Xu, S-X, Applications in random matrix theory of a PIII’ τ-function sequence from Okamoto’s Hamiltonian formulation, Random Matr., 11, 2250014 (2021) · Zbl 1490.37087 · doi:10.1142/S2010326322500149
[127] O. Lisovyy, H. Nagoya and J. Roussillon, Irregular conformal blocks and connection formulae for Painlevé V functions, J. Math. Phys.59 (2018) 091409 [arXiv:1806.08344] [INSPIRE]. · Zbl 1404.33020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.