×

Connection formulas for the \(\lambda\) generalized Ising correlation functions. (English) Zbl 1504.82011

Summary: We derive and prove the connection formulas for the \(\lambda\) generalized diagonal Ising model correlation functions.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Lyberg I and McCoy B M 2007 Form factor expansion of the row and diagonal correlation functions of the two dimensional Ising model J. Phys. A: Math. Theor.40 3329-46 · Zbl 1114.82009 · doi:10.1088/1751-8113/40/13/003
[2] Wu T T, McCoy B M, Tracy C A and Barouch E 1976 The spin – spin correlation function of the 2-dimensional Ising model: exact results in the scaling region Phys. Rev. B 13 316 · doi:10.1103/PhysRevB.13.316
[3] McCoy B M and Wu T T 1973 The Two Dimensional Ising Model (Cambridge, MA: Harvard University Press) · Zbl 1094.82500 · doi:10.4159/harvard.9780674180758
[4] Wu T T 1966 Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model Phys. Rev.149 380 · doi:10.1103/PhysRev.149.380
[5] Boukraa S, Hassani S, Maillard J-M, McCoy B M, Orrick W P and Zenine N 2007 Holonomy of the Ising model form factors J. Phys. A: Math. Theor.40 75-111 · Zbl 1107.82007 · doi:10.1088/1751-8113/40/1/005
[6] Jimbo M and Miwa T 1980 Studies on holonomic quantum fields XVII Proc. Japan Acad. Ser A: Math. Sci.56 405-10 · doi:10.3792/pjaa.56.405
[7] Jimbo M and Miwa T 1981 Proc. Japan Acad. Ser A: Math. Sci.57 347
[8] Witte N S and Forrester P J 2012 Fredholm determinant evaluations of the Ising model diagonal correlations and their λ generalization Stud. Appl. Math.128 183-223 · Zbl 1250.82010 · doi:10.1111/j.1467-9590.2011.00534.x
[9] Gavrylenko P and Lisovyy O 2018 Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions Commun. Math. Phys.363 1-58 · Zbl 1414.34072 · doi:10.1007/s00220-018-3224-7
[10] McCoy B M, Tracy C A and Wu T T 1977 Painlevé functions of the third kind J. Math. Phys.18 1058-92 · Zbl 0353.33008 · doi:10.1063/1.523367
[11] Mangazeev V V and Guttmann A J 2010 Form factor expansion in the 2D Ising model and Painlevé VI, Nucl. Phys.B838 391-412 · Zbl 1206.82024 · doi:10.1016/j.nuclphysb.2010.05.021
[12] Tracy C A 1991 Asymptotics of a τ-function arising in the two-dimensional Ising model Commun. Math. Phys.142 297-311 · Zbl 0734.60106 · doi:10.1007/BF02102065
[13] Jimbo M 1982 Monodromy problem and boundary conditions for some Painlevé equations Publ. Rims, Kyoyo Univ.18 1137-61 · Zbl 0535.34042 · doi:10.2977/prims/1195183300
[14] Iorgov N, Lisovyy O and Tykhyy Yu 2013 Painlevé VI connection problem and monodromy of c = 1 conformal blocks J. High Energy Phys.JHEP12(2013) 029 · Zbl 1342.81500 · doi:10.1007/JHEP12(2013)029
[15] Its A R, Lisovyy O and Prokhorov A 2018 Monodromy dependence and connection formulae for isomonodromic tau functions Duke. Math. J.167 1347-432 · Zbl 1396.33039 · doi:10.1215/00127094-2017-0055
[16] Lisovyy O 2011 Dyson’s constant for the hypergeometric kernel New Trends in Quantum Integrable Systems ed B Feigin et al (Singapore: World Scientific) pp 243-67 · Zbl 1226.34087
[17] Guzzetti D 2008 The logarithmic asymptotics of the sixth Painlevé equation J. Phys. A: Math. Theor.41 205201 · Zbl 1161.34062 · doi:10.1088/1751-8113/41/20/205201
[18] Orrick W P, Nickel B, Guttmann A J and Perk J H H 2001 The susceptibility of the square lattice Ising model: new developments J. Stat. Phys.102 795-841 · Zbl 0999.82020 · doi:10.1023/A:1004850919647
[19] McCoy B M, Assis M, Boukraa S, Hassani S, Maillard J-M, Orrick W P and Zenine N 2010 The saga of the Ising model Publ. Rims. Kyoto Univ.46 287-306 · Zbl 1221.82033 · doi:10.1142/9789814324373_0015
[20] Erdélyi E et al 1955 Higher Transcendental Functions vol 2 (New York: McGraw-Hill)
[21] Borodin A and Okounkov A 2000 A Fredholm determinant formula for Toeplitz determinants Integral Equ. Operator Theory37 386-96 · Zbl 0970.47014 · doi:10.1007/BF01192827
[22] Borodin A and Deift P 2002 Fredholm determinants, Jimbo-Miwa-Ueno tau-functions and representation theory Commun. Pure. Appl. Math.55 1160-230 · Zbl 1033.34089 · doi:10.1002/cpa.10042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.