×

Hook formulas for skew shapes. IV: Increasing tableaux and factorial Grothendieck polynomials. (English) Zbl 1491.05193

J. Math. Sci., New York 261, No. 5, 630-657 (2022) and Zap. Nauchn. Semin. POMI 507, 59-98 (2021).
Summary: We present a new family of hook-length formulas for the number of standard increasing tableaux which arise in the study of factorial Grothendieck polynomials. In the case of straight shapes, our formulas generalize the classical hook-length formula and the Littlewood formula. For skew shapes, our formulas generalize the Naruse hook-length formula and its \(q\)-analogs, which were studied in previous papers of the series.
For Part III see [the authors, Algebr. Comb. 2, No. 5, 815–861 (2019; Zbl 1425.05158)].

MSC:

05E10 Combinatorial aspects of representation theory
05A05 Permutations, words, matrices
14M15 Grassmannians, Schubert varieties, flag manifolds

Citations:

Zbl 1425.05158

Software:

OEIS

References:

[1] H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of Quantum Groups at pth Root of Unity and of Semisimple Groups in Characteristic p: Independence of p,” Astérisque, 220 (1994). · Zbl 0802.17009
[2] Billey, S., Kostant polynomials and the cohomology ring for G/B, Duke Math. J., 96, 205-224 (1999) · Zbl 0980.22018 · doi:10.1215/S0012-7094-99-09606-0
[3] Brion, M., Lectures on the geometry of flag varieties, Topics in Cohomological Studies of Algebraic Varieties, 33-85 (2005), Basel: Birkh¨auser, Basel · Zbl 1487.14105 · doi:10.1007/3-7643-7342-3_2
[4] A. Buch, “A Littlewood-Richardson rule for the K-theory of Grassmannians,” Acta Math., 189, 37-78 (2002). · Zbl 1090.14015
[5] A. Buch, “Combinatorial K-theory,” in: Topics in Cohomological Studies of Algebraic Varieties, Birkhäuser, Basel (2005), pp. 87-103. · Zbl 1487.14106
[6] Buch, A.; Kresch, A.; Shimozono, M.; Tamvakis, H.; Yong, A., Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann., 340, 359-382 (2008) · Zbl 1157.14036 · doi:10.1007/s00208-007-0155-6
[7] D. Bump, P. J. McNamara, and M. Nakasuji, “Factorial Schur functions and the Yang-Baxter equation,” Comment. Math. Univ. St. Pauli, 63, 23-45 (2014). · Zbl 1312.05140
[8] Chen, X.; Stanley, RP, A formula for the specialization of skew Schur functions, Ann. Comb., 20, 539-548 (2016) · Zbl 1347.05248 · doi:10.1007/s00026-016-0312-2
[9] Ciocan-Fontanine, I.; Konvalinka, M.; Pak, I., The weighted hook length formula, J. Combin. Theory, Ser. A, 118, 1703-1717 (2011) · Zbl 1227.05034 · doi:10.1016/j.jcta.2011.02.004
[10] Dilks, K.; Pechenik, O.; Striker, J., Resonance in orbits of plane partitions and increasing tableaux, J. Combin. Theory, Ser. A, 148, 244-274 (2017) · Zbl 1355.05266 · doi:10.1016/j.jcta.2016.12.007
[11] Edelman, P.; Greene, C., Balanced tableaux, Adv. Math., 63, 42-99 (1987) · Zbl 0616.05005 · doi:10.1016/0001-8708(87)90063-6
[12] Fan, NJY; Guo, PL; Sun, SCC, Proof of a conjecture of Reiner-Tenner-Yong on barely set-valued tableaux, SIAM J. Discrete Math., 33, 189-196 (2019) · Zbl 1403.05162 · doi:10.1137/18M1214305
[13] S. Fomin and A. N. Kirillov, “Yang-Baxter equation, symmetric functions and Grothendieck polynomials,” preprint (1993); arXiv:hep-th/9306005.
[14] S. Fomin and A. N. Kirillov, “Grothendieck polynomials and the Yang-Baxter equation,” in: Proc. 6th FPSAC, DIMACS, Piscataway, New Jersey (1994), pp. 183-190.
[15] Fomin, S.; Kirillov, AN, Reduced words and plane partitions, J. Algebraic Combin., 6, 311-319 (1997) · Zbl 0882.05010 · doi:10.1023/A:1008694825493
[16] J. S. Frame, G. de B. Robinson, and R. M. Thrall, “The hook graphs of the symmetric group,” Canad. J. Math., 6, 316-324 (1954). · Zbl 0055.25404
[17] Goulden, IP; Jackson, DM, Combinatorial Enumeration (1983), New York: Wiley, New York · Zbl 0519.05001
[18] Graham, W.; Kreiman, V., Excited Young diagrams and equivariant K-theory, and Schubert varieties, Trans. Amer. Math. Soc., 367, 6597-6645 (2015) · Zbl 1317.05187 · doi:10.1090/S0002-9947-2015-06288-6
[19] Greene, C.; Nijenhuis, A.; Wilf, HS, A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. Math., 31, 104-109 (1979) · Zbl 0398.05008 · doi:10.1016/0001-8708(79)90023-9
[20] Hamaker, Z.; Patrias, R.; Pechenik, O.; Williams, N., Doppelg¨angers: bijections of plane partitions, Int. Math. Res. Not., 2020, 2, 487-540 (2020) · Zbl 1433.05041 · doi:10.1093/imrn/rny018
[21] Z. Hamaker, A. H. Morales, I. Pak, L. Serrano, and N. Williams, “Bijecting hidden symmetries for skew staircase shapes,” preprint (2021); arXiv:2103.09551.
[22] Z. Hamaker and B. Young, “Relating Edelman-Greene insertion to the Little map,” J. Algebraic Combin., 40, 693-710 (2014). · Zbl 1309.05007
[23] Hwang, BH; Kim, JS; Yoo, M.; Yun, SM, Reverse plane partitions of skew staircase shapes and q-Euler numbers, J. Combin. Theory, Ser. A, 168, 120-163 (2019) · Zbl 1421.05095 · doi:10.1016/j.jcta.2019.05.013
[24] Ikeda, T.; Naruse, H., Excited Young diagrams and equivariant Schubert calculus, Trans. Amer. Math. Soc., 361, 5193-5221 (2009) · Zbl 1229.05287 · doi:10.1090/S0002-9947-09-04879-X
[25] Ikeda, T.; Naruse, H., K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math., 243, 22-66 (2013) · Zbl 1278.05240 · doi:10.1016/j.aim.2013.04.014
[26] V. Kreiman, “Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian,” preprint (2005); arXiv:math.AG/0512204.
[27] Knutson, A.; Miller, E., Gröbner geometry of Schubert polynomials, Ann. Math., 161, 1245-1318 (2005) · Zbl 1089.14007 · doi:10.4007/annals.2005.161.1245
[28] Knutson, A.; Miller, E.; Yong, A., Gr¨obner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math., 630, 1-31 (2009) · Zbl 1169.14033 · doi:10.1515/CRELLE.2009.033
[29] Konvalinka, M., A bijective proof of the hook-length formula for skew shapes, European J. Combin., 88 (2020) · Zbl 1442.05022 · doi:10.1016/j.ejc.2020.103104
[30] Lam, T.; Lee, SJ; Shimozono, M., Back stable Schubert calculus, Compos. Math., 157, 883-962 (2021) · Zbl 1521.14086 · doi:10.1112/S0010437X21007028
[31] A. Lascoux and M.-P. Schützenberger, “Polynômes de Schubert,” C. R. Acad. Sci. Paris, 294, No. 13, 447-450 (1982). · Zbl 0495.14031
[32] A. Lascoux and M.-P. Schützenberger, “Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une vari´et´e de drapeaux,” C. R. Acad. Sci. Paris, 295, No. 11, 629-633 (1982). · Zbl 0542.14030
[33] C. Lenart and A. Postnikov, “Affine Weyl groups in K-theory and representation theory,” Int. Math. Res. Not., 2007, No. 12, Art. ID rnm038 (2007). · Zbl 1137.14037
[34] Littlewood, DE, The Theory of Group Characters and Matrix Representations of Groups (1950), New York: Oxford Univ. Press, New York · Zbl 0038.16504
[35] I. G. Macdonald, “Schur functions: theme and variations,” in: Publ. Inst. Rech. Math. Av., 498, Univ. Louis Pasteur, Strasbourg (1992), pp. 5-39. · Zbl 0889.05073
[36] Manivel, L., Symmetric Functions, Schubert Polynomials and Degeneracy Loci (2001), Providence, Rhode Island: Amer. Math. Soc, Providence, Rhode Island · Zbl 0998.14023
[37] P. J. McNamara, “Factorial Grothendieck polynomials,” Electron. J. Combin., 13, No. 1, RP 71 (2006). · Zbl 1099.05078
[38] P. J. McNamara, “Addendum to Factorial Grothendieck polynomials,” preprint (2011); available at tinyurl.com/3dfs7e9s.
[39] A. I. Molev and B. E. Sagan, “A Littlewood-Richardson rule for factorial Schur functions,” Trans. Amer. Math. Soc., 351, 4429-4443 (1999). · Zbl 0972.05053
[40] C. Monical, B. Pankow, and A. Yong, “Reduced word enumeration, complexity, and randomization,” preprint (2019); arXiv:1901.03247.
[41] Morales, AH; Pak, I.; Panova, G., Hook formulas for skew shapes I. q-analogues and bijections, J. Combin. Theory, Ser. A, 154, 350-405 (2018) · Zbl 1373.05026 · doi:10.1016/j.jcta.2017.09.002
[42] Morales, AH; Pak, I.; Panova, G., Hook formulas for skew shapes II. Combinatorial proofs and enumerative applications, SIAM J. Discrete Math., 31, 1953-1989 (2017) · Zbl 1370.05007 · doi:10.1137/16M1099625
[43] Morales, AH; Pak, I.; Panova, G., Hook formulas for skew shapes III. Multivariate and product formulas, Algebr. Comb., 2, 815-861 (2019) · Zbl 1425.05158
[44] Morales, AH; Pak, I.; Panova, G., Asymptotics of principal evaluations of Schubert polynomials for layered permutations, Proc. Amer. Math. Soc., 147, 1377-1389 (2019) · Zbl 1405.05003 · doi:10.1090/proc/14369
[45] A. H. Morales and D. G. Zhu, “On the Okounkov-Olshanski formula for standard tableaux of skew shapes,” preprint (2020); arXiv:2007.05006. · Zbl 1447.05227
[46] H. Naruse, “Schubert calculus and hook formula,” talk slides at 73rd Sém. Lothar. Combin., Strobl, Austria (2014); available at tinyurl.com/z6paqzu.
[47] Naruse, H.; Okada, S., Skew hook formula for d-complete posets via equivariant K-theory, Algebr. Comb., 2, 541-571 (2019) · Zbl 1417.05011
[48] Novelli, J-C; Pak, I.; Stoyanovskii, AV, A direct bijective proof of the hook-length formula, Discrete Math. Theor. Comput. Sci., 1, 53-67 (1997) · Zbl 0934.05125 · doi:10.46298/dmtcs.239
[49] Okounkov, A.; Olshanski, G., Shifted Schur functions, St. Petersburg Math. J., 9, 239-300 (1998) · Zbl 0941.17008
[50] I. Pak, “Hook length formula and geometric combinatorics,” S´em. Lothar. Combin., 46, Art. B46f (2001). · Zbl 0982.05109
[51] I. Pak, “Skew shape asymptotics, a case-based introduction,” S´em. Lothar. Combin., 84, Art. B84a (2021). · Zbl 1491.05194
[52] I. Pak and F. Petrov, “Hidden symmetries of weighted lozenge tilings,” Electron. J. Combin., 27, No. 3, #P3.44 (2020). · Zbl 1441.05025
[53] Pechenik, O., Cyclic sieving of increasing tableaux and small Schr¨oder paths, J. Combin. Theory, Ser. A, 125, 357-378 (2014) · Zbl 1295.05265 · doi:10.1016/j.jcta.2014.04.002
[54] O. Pechenik, “Minuscule analogues of the plane partition periodicity conjecture of Cameron and Fon-Der-Flaass,” preprint (2021); arXiv:2107.02679.
[55] Pechenik, O.; Yong, A., Equivariant K-theory of Grassmannians, Forum Math. Pi, 5 (2017) · Zbl 1369.14060 · doi:10.1017/fmp.2017.4
[56] Pressey, T.; Stokke, A.; Visentin, T., Increasing tableaux, Narayana numbers and an instance of the cyclic sieving phenomenon, Ann. Comb., 20, 609-621 (2016) · Zbl 1347.05252 · doi:10.1007/s00026-016-0320-2
[57] Reiner, V.; Tenner, B.; Yong, A., Poset edge densities, nearly reduced words, and barely set-valued tableaux, J. Combin. Theory, Ser. A, 158, 66-125 (2018) · Zbl 1391.05269 · doi:10.1016/j.jcta.2018.03.010
[58] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, http://oeis.org. · Zbl 1044.11108
[59] R. P. Stanley, Enumerative Combinatorics, Cambridge Univ. Press, Vol. 1, 2nd edition (2012) and Vol. 2 (1999). · Zbl 0928.05001
[60] R. P. Stanley, “Some Schubert shenanigans,” preprint (2017); arXiv:1704.00851.
[61] Sulanke, RA, The Narayana distribution, J. Statist. Plann. Inference, 101, 311-326 (2002) · Zbl 1001.05009 · doi:10.1016/S0378-3758(01)00192-6
[62] Thomas, H.; Yong, A., A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus, Algebra Number Theory, 3, 121-148 (2009) · Zbl 1229.05285 · doi:10.2140/ant.2009.3.121
[63] Thomas, H.; Yong, A., Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. Appl. Math., 46, 610-642 (2011) · Zbl 1227.05262 · doi:10.1016/j.aam.2009.07.005
[64] Thomas, H.; Yong, A., Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble), 68, 275-318 (2018) · Zbl 1400.05273 · doi:10.5802/aif.3161
[65] A.Weigandt, “Bumpless pipe dreams and alternating sign matrices,” J. Combin. Theory, Ser. A, 182, Paper 105470 (2021). · Zbl 1475.05172
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.