×

A web basis of invariant polynomials from noncrossing partitions. (English) Zbl 1504.05023

Specht modules \(S^\lambda\), indexed by integer partitions \(\lambda\), are irreducible complex representations of symmetric groups \(S_n\). There are many different ways to construct Specht modules. These various constructions yield distinct linear bases of \(S^\lambda\). An important construction of the Specht module might be the class of global sections of a line bundle on a partial flag variety. In this case, standard monomial theory endows each \(S^\lambda\) with a natural basis of polynomials, encoded by standard Young tableaux of shape \(\lambda\). In special cases, this realization of \(S^\lambda\) has also a remarkable basis, consisting of a different set of invariant polynomials, encoded by planar diagrams called webs.
From the authors’ abstract: “Particularly powerful are web bases, which make important connections with cluster algebras and quantum link invariants. Unfortunately, web bases are only known in very special cases – essentially, only the cases \(\lambda=(d,d)\) and \(\lambda=(d,d,d)\). Building on work of B. Rhoades [J. Algebr. Comb. 45, No. 1, 81–127 (2017; Zbl 1355.05280)], we construct an apparent web basis of invariant polynomials for the \(2\)-parameter family of Specht modules with \(\lambda\) of the form \((d,d,1^l)\). The planar diagrams that appear are noncrossing set partitions, and we thereby obtain geometric interpretations of earlier enumerative results in combinatorial dynamics.”

MSC:

05E10 Combinatorial aspects of representation theory
05A18 Partitions of sets
20C30 Representations of finite symmetric groups

Citations:

Zbl 1355.05280

References:

[1] Armstrong, D.; Reiner, V.; Rhoades, B., Parking spaces, Adv. Math., 269, 647-706 (2015) · Zbl 1347.20039
[2] Bazier-Matte, V.; Douville, G.; Garver, A.; Patrias, R.; Thomas, H.; Yıldırım, E., Leading terms of \(S L_3\) web invariants, Int. Math. Res. Not. IMRN, 3, 1714-1733 (2022) · Zbl 07471363
[3] Bloom, J.; Pechenik, O.; Saracino, D., Proofs and generalizations of a homomesy conjecture of Propp and Roby, Discrete Math., 339, 1, 194-206 (2016) · Zbl 1322.05136
[4] Buch, A. S.; Samuel, M. J., K-theory of minuscule varieties, J. Reine Angew. Math., 719, 133-171 (2016) · Zbl 1431.19001
[5] Cameron, P. J.; Fon-Der-Flaass, D. G., Orbits of antichains revisited, Eur. J. Comb., 16, 6, 545-554 (1995) · Zbl 0831.06001
[6] Clifford, E.; Thomas, H.; Yong, A., K-theoretic Schubert calculus for \(\operatorname{OG}(n, 2 n + 1)\) and jeu de taquin for shifted increasing tableaux, J. Reine Angew. Math., 690, 51-63 (2014) · Zbl 1348.14127
[7] Dilks, K.; Pechenik, O.; Striker, J., Resonance in orbits of plane partitions and increasing tableaux, J. Comb. Theory, Ser. A, 148, 244-274 (2017) · Zbl 1355.05266
[8] Elias, B.; Williamson, G., The Hodge theory of Soergel bimodules, Ann. Math. (2), 180, 3, 1089-1136 (2014) · Zbl 1326.20005
[9] Fontaine, B., Generating basis webs for \(\operatorname{S} \operatorname{L}_{\operatorname{n}} \), Adv. Math., 229, 5, 2792-2817 (2012) · Zbl 1279.20056
[10] Fomin, S.; Pylyavskyy, P., Tensor diagrams and cluster algebras, Adv. Math., 300, 717-787 (2016) · Zbl 1386.13062
[11] Fraser, C., Braid group symmetries of Grassmannian cluster algebras, Sel. Math. New Ser., 26, 2, Article 17 pp. (2020) · Zbl 1436.13049
[12] Fulton, W., Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, vol. 35 (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0878.14034
[13] Fung, F. Y.C., On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math., 178, 2, 244-276 (2003) · Zbl 1035.20004
[14] Geiss, C.; Leclerc, B.; Schröer, J., Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble), 58, 3, 825-876 (2008) · Zbl 1151.16009
[15] Hwang, B.-H.; Jang, J.; Oh, J., A combinatorial model for the transition matrix between the Specht and web bases (2021), 22 pages
[16] Howe, R. M.; Liu, H.; Vaughan, M., A proof of the equivalence between the polytabloid bases and Specht polynomials for irreducible representations of the symmetric group, Ball State Undergrad. Math. Exchange, 14, 1, 25-33 (2020)
[17] Hamaker, Z.; Patrias, R.; Pechenik, O.; Williams, N., Doppelgängers: bijections of plane partitions, Int. Math. Res. Not. IMRN, 2, 487-540 (2020) · Zbl 1433.05041
[18] Im, M. S.; Zhu, J., Transitioning between tableaux and spider bases for Specht modules, Algebr. Represent. Theory, 25, 2, 387-399 (2022) · Zbl 1485.05178
[19] Jones, V. F.R., A polynomial invariant for knots via von Neumann algebras, Bull. Am. Math. Soc. (N.S.), 12, 1, 103-111 (1985) · Zbl 0564.57006
[20] Khovanov, M., sl(3) link homology, Algebraic Geom. Topol., 4, 1045-1081 (2004) · Zbl 1159.57300
[21] Kim, D., Graphical calculus on representations of quantum Lie algebras (2003), ProQuest LLC: ProQuest LLC Ann Arbor, MI, Thesis (Ph.D.)-University of California, Davis
[22] Khovanov, M.; Kuperberg, G., Web bases for \(\operatorname{sl}(3)\) are not dual canonical, Pac. J. Math., 188, 1, 129-153 (1999) · Zbl 0929.17012
[23] Kazhdan, D.; Lusztig, G., Schubert varieties and Poincaré duality, (Geometry of the Laplace Operator, Proc. Sympos. Pure Math.. Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979. Geometry of the Laplace Operator, Proc. Sympos. Pure Math.. Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math., vol. XXXVI (1980), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 185-203 · Zbl 0461.14015
[24] Kazhdan, D.; Lusztig, G., A topological approach to Springer’s representations, Adv. Math., 38, 2, 222-228 (1980) · Zbl 0458.20035
[25] Kim, J.; Rhoades, B., Set partitions, fermions, and skein relations, Int. Math. Res. Not. IMRN (2022), 54 pages
[26] Kuperberg, G., Spiders for rank 2 Lie algebras, Commun. Math. Phys., 180, 1, 109-151 (1996) · Zbl 0870.17005
[27] Lakshmibai, V.; Brown, J., Flag Varieties: an Interplay of Geometry, Combinatorics, and Representation Theory, Texts and Readings in Mathematics, vol. 53 (2018), Hindustan Book Agency: Hindustan Book Agency Delhi · Zbl 1416.14001
[28] Lakshmibai, V.; Raghavan, K. N., Standard monomial theory, (Invariant Theoretic Approach, Invariant Theory and Algebraic Transformation Groups, vol. 8. Invariant Theoretic Approach, Invariant Theory and Algebraic Transformation Groups, vol. 8, Encyclopaedia of Mathematical Sciences, vol. 137 (2008), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1137.14036
[29] Morrison, S. E., A diagrammatic category for the representation theory of \(U_q( \mathfrak{sl}_n) (2007)\), ProQuest LLC: ProQuest LLC Ann Arbor, MI, Thesis (Ph.D.)-University of California, Berkeley
[30] Morales, A. H.; Pak, I.; Panova, G., Hook formulas for skew shapes IV. Increasing tableaux and factorial Grothendieck polynomials, J. Math. Sci. (N.Y.), 261, 630-657 (2022) · Zbl 1491.05193
[31] Miller, E.; Sturmfels, B., Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227 (2005), Springer-Verlag: Springer-Verlag New York · Zbl 1090.13001
[32] Mazorchuk, V.; Stroppel, C., A combinatorial approach to functorial quantum \(\mathfrak{sl}_k\) knot invariants, Am. J. Math., 131, 6, 1679-1713 (2009) · Zbl 1258.57007
[33] Pechenik, O., Cyclic sieving of increasing tableaux and small Schröder paths, J. Comb. Theory, Ser. A, 125, 357-378 (2014) · Zbl 1295.05265
[34] Pechenik, O., Promotion of increasing tableaux: frames and homomesies, Electron. J. Comb., 24, 3, Article 3.50 pp. (2017) · Zbl 1369.05215
[35] Patrias, R.; Pechenik, O., Dynamics of plane partitions: proof of the Cameron-Fon-Der-Flaass conjecture, Forum Math. Sigma, 8, Article e62 pp. (2020) · Zbl 1454.05128
[36] Patrias, R.; Pechenik, O., Tableau evacuation and webs (2021), 10 pages
[37] Petersen, T. K.; Pylyavskyy, P.; Rhoades, B., Promotion and cyclic sieving via webs, J. Algebraic Comb., 30, 1, 19-41 (2009) · Zbl 1226.05260
[38] Pressey, T.; Stokke, A.; Visentin, T., Increasing tableaux, Narayana numbers and an instance of the cyclic sieving phenomenon, Ann. Comb., 20, 3, 609-621 (2016) · Zbl 1347.05252
[39] Pechenik, O.; Yong, A., Equivariant K-theory of Grassmannians, Forum Math. Pi, 5 (2017), 128 pages · Zbl 1369.14060
[40] Rhoades, B., Cyclic sieving, promotion, and representation theory, J. Comb. Theory, Ser. A, 117, 1, 38-76 (2010) · Zbl 1230.05289
[41] Rhoades, B., A skein action of the symmetric group on noncrossing partitions, J. Algebraic Comb., 45, 1, 81-127 (2017) · Zbl 1355.05280
[42] Rhoades, B., The polytabloid basis expands positively into the web basis, Forum Math. Sigma, 7, Article e26 pp. (2019) · Zbl 1419.05218
[43] Reiner, V.; Shimozono, M., Percentage-avoiding, northwest shapes and peelable tableaux, J. Comb. Theory, Ser. A, 82, 1, 1-73 (1998) · Zbl 0909.05049
[44] Reiner, V.; Stanton, D.; White, D., The cyclic sieving phenomenon, J. Comb. Theory, Ser. A, 108, 1, 17-50 (2004) · Zbl 1052.05068
[45] Russell, H. M.; Tymoczko, J. S., The transition matrix between the Specht and web bases is unipotent with additional vanishing entries, Int. Math. Res. Not. IMRN, 5, 1479-1502 (2019) · Zbl 1468.20025
[46] Russell, H. M.; Tymoczko, J., The transition matrix between the Specht and \(\mathfrak{sl}_3\) web bases is unitriangular with respect to shadow containment, Int. Math. Res. Not. IMRN, 5, 3371-3416 (2022) · Zbl 07487093
[47] Russell, H. M., A topological construction for all two-row Springer varieties, Pac. J. Math., 253, 1, 221-255 (2011) · Zbl 1241.57021
[48] Schützenberger, M. P., Promotion des morphismes d’ensembles ordonnés, Discrete Math., 2, 73-94 (1972) · Zbl 0279.06001
[49] Stanley, R. P., Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, 76, 1, 175-177 (1996) · Zbl 0859.05075
[50] Stanley, R. P., Catalan Numbers (2015), Cambridge University Press: Cambridge University Press New York · Zbl 1317.05010
[51] Striker, J., Dynamical algebraic combinatorics: promotion, rowmotion, and resonance, Not. Am. Math. Soc., 64, 6, 543-549 (2017) · Zbl 1370.05219
[52] Striker, J.; Williams, N., Promotion and rowmotion, Eur. J. Comb., 33, 8, 1919-1942 (2012) · Zbl 1260.06004
[53] Stroppel, C.; Webster, B., 2-block Springer fibers: convolution algebras and coherent sheaves, Comment. Math. Helv., 87, 2, 477-520 (2012) · Zbl 1241.14009
[54] Temperley, H. N.V.; Lieb, E. H., Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. R. Soc. Lond. Ser. A, 322, 1549, 251-280 (1971) · Zbl 0211.56703
[55] Thomas, H.; Yong, A., A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus, Algebra Number Theory, 3, 2, 121-148 (2009) · Zbl 1229.05285
[56] Thomas, H.; Yong, A., Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. Appl. Math., 46, 1-4, 610-642 (2011) · Zbl 1227.05262
[57] Tymoczko, J., A simple bijection between standard \(3 \times n\) tableaux and irreducible webs for \(\mathfrak{sl}_3\), J. Algebraic Comb., 35, 4, 611-632 (2012) · Zbl 1242.05277
[58] Vorland, C., Homomesy in products of three chains and multidimensional recombination, Electron. J. Comb., 26, 4, Article 4.30 pp. (2019) · Zbl 1427.05231
[59] Westbury, B. W., Web bases for the general linear groups, J. Algebraic Comb., 35, 1, 93-107 (2012) · Zbl 1272.17020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.