×

A unified approach to compute foliations, inertial manifolds, and tracking solutions. (English) Zbl 1347.37134

Summary: Several algorithms are presented for the accurate computation of the leaves in the foliation of an ODE near a hyperbolic fixed point. They are variations of a contraction mapping method used by R. Rosa [Discrete Contin. Dyn. Syst. 1, No. 3, 421–448 (1995; Zbl 0883.34064)] to compute inertial manifolds, which represents a particular leaf in the unstable foliation. Such a mapping is combined with one for the leaf in the stable foliation to compute tracking solutions. The algorithms are demonstrated on the Kuramoto-Sivashinsky equation.

MSC:

37M99 Approximation methods and numerical treatment of dynamical systems
34C45 Invariant manifolds for ordinary differential equations

Citations:

Zbl 0883.34064

Software:

FOLI8PAK

References:

[1] Bates, Peter W.; Lu, Kening, A Hartman-Grobman theorem for the Cahn-Hilliard and phase-field equations, J. Dynam. Differential Equations, 6, 1, 101-145 (1994) · Zbl 0795.35052 · doi:10.1007/BF02219190
[2] Bates, Peter W.; Lu, Kening; Zeng, Chongchun, Existence and persistence of invariant manifolds for semiflows in Banach space, Mem. Amer. Math. Soc., 135, 645, viii+129 pp. (1998) · Zbl 1023.37013 · doi:10.1090/memo/0645
[3] Bates, Peter W.; Lu, Kening; Zeng, Chongchun, Invariant foliations near normally hyperbolic invariant manifolds for semiflows, Trans. Amer. Math. Soc., 352, 10, 4641-4676 (2000) · Zbl 0964.37018 · doi:10.1090/S0002-9947-00-02503-4
[4] Cabr{\'e}, Xavier; Fontich, Ernest; de la Llave, Rafael, The parameterization method for invariant manifolds. III. Overview and applications, J. Differential Equations, 218, 2, 444-515 (2005) · Zbl 1101.37019 · doi:10.1016/j.jde.2004.12.003
[5] Casta{\~n}eda, Nelson; Rosa, Ricardo, Optimal estimates for the uncoupling of differential equations, J. Dynam. Differential Equations, 8, 1, 103-139 (1996) · Zbl 0854.34060 · doi:10.1007/BF02218616
[6] Chow, Shui-Nee; Lin, Xiao-Biao; Lu, Kening, Smooth invariant foliations in infinite-dimensional spaces, J. Differential Equations, 94, 2, 266-291 (1991) · Zbl 0749.58043 · doi:10.1016/0022-0396(91)90093-O
[7] [FOLI8] Y.-M. Chung. \newblockFOLI8PAK software package. \newblockThe Dynamical Systems Web Software List (\urlhttp://www.dynamicalsystems.org/sw/).
[8] Cox, Stephen M.; Roberts, A. J., Initial conditions for models of dynamical systems, Phys. D, 85, 1-2, 126-141 (1995) · Zbl 0894.58059 · doi:10.1016/0167-2789(94)00201-Z
[9] Foias, C.; Manley, O.; Temam, R., Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, RAIRO Mod\'el. Math. Anal. Num\'er., 22, 1, 93-118 (1988) · Zbl 0663.76054
[10] Foias, C.; Nicolaenko, B.; Sell, G. R.; Temam, R., Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. (9), 67, 3, 197-226 (1988) · Zbl 0694.35028
[11] Foias, Ciprian; Sell, George R.; Temam, Roger, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73, 2, 309-353 (1988) · Zbl 0643.58004 · doi:10.1016/0022-0396(88)90110-6
[12] Foias, Ciprian; Sell, George R.; Titi, Edriss S., Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynam. Differential Equations, 1, 2, 199-244 (1989) · Zbl 0692.35053 · doi:10.1007/BF01047831
[13] Foia{\c{s}}, C.; Temam, R., Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9), 58, 3, 339-368 (1979) · Zbl 0454.35073
[14] Jolly, M. S.; Kevrekidis, I. G.; Titi, E. S., Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Phys. D, 44, 1-2, 38-60 (1990) · Zbl 0704.58030 · doi:10.1016/0167-2789(90)90046-R
[15] Jolly, M. S.; Rosa, R., Computation of non-smooth local centre manifolds, IMA J. Numer. Anal., 25, 4, 698-725 (2005) · Zbl 1076.76062 · doi:10.1093/imanum/dri013
[16] Jolly, M. S.; Rosa, R.; Temam, R., Accurate computations on inertial manifolds, SIAM J. Sci. Comput., 22, 6, 2216-2238 (electronic) (2000) · Zbl 0988.34048 · doi:10.1137/S1064827599351738
[17] Jolly, M. S.; Rosa, R.; Temam, R., Evaluating the dimension of an inertial manifold for the Kuramoto-Sivashinsky equation, Adv. Differential Equations, 5, 1-3, 31-66 (2000) · Zbl 1045.37048
[18] Kirchgraber, U.; Palmer, K. J., Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization, Pitman Research Notes in Mathematics Series 233, vi+89 pp. (1990), Longman Scientific & Technical: Harlow:Longman Scientific & Technical · Zbl 0746.58008
[19] Krauskopf, B.; Osinga, H. M.; Doedel, E. J.; Henderson, M. E.; Guckenheimer, J.; Vladimirsky, A.; Dellnitz, M.; Junge, O., A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15, 3, 763-791 (2005) · Zbl 1086.34002 · doi:10.1142/S0218127405012533
[20] Lu, Kening, A Hartman-Grobman theorem for scalar reaction-diffusion equations, J. Differential Equations, 93, 2, 364-394 (1991) · Zbl 0767.35039 · doi:10.1016/0022-0396(91)90017-4
[21] Nievergelt, Yves, Aitken’s and Steffensen’s accelerations in several variables, Numer. Math., 59, 3, 295-310 (1991) · Zbl 0712.65037 · doi:10.1007/BF01385782
[22] P{\"o}tzsche, Christian; Rasmussen, Martin, Computation of nonautonomous invariant and inertial manifolds, Numer. Math., 112, 3, 449-483 (2009) · Zbl 1169.65116 · doi:10.1007/s00211-009-0215-9
[23] Roberts, A. J., Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems, J. Austral. Math. Soc. Ser. B, 31, 1, 48-75 (1989) · Zbl 0679.34044 · doi:10.1017/S0334270000006470
[24] [Roberts3] A. J. Roberts, Computer algebra derives correct initial conditions for low-dimensional dynamical models, Computer Physics Communication 126 (2000), 187-206. · Zbl 0956.65117
[25] Robinson, James C., Computing inertial manifolds, Discrete Contin. Dyn. Syst., 8, 4, 815-833 (2002) · Zbl 1032.34060 · doi:10.3934/dcds.2002.8.815
[26] Rosa, Ricardo, Approximate inertial manifolds of exponential order, Discrete Contin. Dynam. Systems, 1, 3, 421-448 (1995) · Zbl 0883.34064 · doi:10.3934/dcds.1995.1.421
[27] Temam, Roger; Wang, Xiao Ming, Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case, Differential Integral Equations, 7, 3-4, 1095-1108 (1994) · Zbl 0858.35017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.