×

Block-based adaptive mesh refinement scheme using numerical density of entropy production for three-dimensional two-fluid flows. (English) Zbl 07514815

Summary: In this work, we present a fast and parallel finite volume scheme on unstructured meshes applied to complex fluid flow. The mathematical model is based on a three-dimensional compressible low Mach two-phase flows model, combined with a linearised ‘artificial pressure’ law. This hyperbolic system of conservation laws allows an explicit scheme, improved by a block-based adaptive mesh refinement scheme. Following a previous one-dimensional work, the useful numerical density of entropy production is used as mesh refinement criterion. Moreover, the computational time is preserved using a local time-stepping method. Finally, we show through several test cases the efficiency of the present scheme on two- and three-dimensional dam-break problems over an obstacle.

MSC:

76-XX Fluid mechanics
80-XX Classical thermodynamics, heat transfer

Software:

VOLNA

References:

[1] Abadie, S.; Morichon, D.; Grilli, S.; Glockner, S., Numerical Simulation of Waves Generated by Landslides Using a Multiple-Fluid NavierStokes Model, Coastal Engineering, 57, 9, 779-794 (2010)
[2] Abgrall, R., How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi-Conservative Approach, Journal of Computational Physics, 125, 150-160 (1996) · Zbl 0847.76060
[3] Allaire, G.; Clerc, S.; Kokh, S., A Five-Equation Model for the Simulation of Interfaces Between Compressible Fluids, Journal of Computational Physics, 181, 577-616 (2002) · Zbl 1169.76407
[4] Altmann, C.; Belat, T.; Gutnic, M.; Helluy, P.; Mathis, H.; Sonnendrücker, E.; Angulo, W.; Hérard, J. M., A Local Time-Stepping Discontinuous Galerkin Algorithm for the MHD System, ESAIM, 28, 33-54 (2009) · Zbl 1176.76058 · doi:10.1051/proc/2009038
[5] Altomare, C.; Crespo, A. J.C.; Rogers, B. D.; Dominguez, J. M.; Gironella, X.; Gomez-Gesteira, M., Numerical Modelling of Armour Block Sea Breakwater with Smoothed Particle Hydrodynamics, Computers and Structures, 130, 34-45 (2014)
[6] Banari, A.; Janßen, C.; Grilli, S. T.; Krafczyk, M., Efficient GPGPU Implementation of a Lattice Boltzmann Model for Multiphase Flows with High Density Ratios, Computers & Fluids, 93, 1-17 (2014) · Zbl 1391.76597
[7] Berger, M. J.; Colella, P., Local Adaptive Mesh Refinement for Shock Hydrodynamics, Journal of Computational Physics, 82, 1, 64-84 (1989) · Zbl 0665.76070
[8] Chorin, A. J., A Numerical Method for Solving Incompressible Viscous Flow Problems, Journal of Computational Physics, 2, 1, 12-26 (1967) · Zbl 0149.44802
[9] Coupez, T.; Hachem, E., Solution of High-Reynolds Incompressible Flow with Stabilized Finite Element and Adaptive Anisotropic Meshing, Computer Methods in Applied Mechanics and Engineering, 267, 65-85 (2013) · Zbl 1286.76029
[10] Dutykh, D.; Poncet, R.; Dias, F., The VOLNA Code for the Numerical Modeling of Tsunami Waves: Generation, Propagation and Inundation, European Journal of Mechanics - B/Fluids, 30, 6, 598-615 (2011) · Zbl 1258.76036
[11] Ersoy, M.; Golay, F.; Yushchenko, L., Adaptive Multiscale Scheme Based on Numerical Density of Entropy Production for Conservation Laws, Central European Journal of Mathematics, 11, 8, 1392-1415 (2013) · Zbl 1457.35022 · doi:10.2478/s11533-013-0252-6
[12] Fuster, D.; Agbaglah, G.; Josserand, C.; Popinet, S.; Zaleski, S., Numerical Simulation of Droplets, Bubbles and Waves: State of the Art, Fluid Dynamics Research, 41, 6, 065001 (2009) · Zbl 1423.76002
[13] Golay, F., Numerical Entropy Production and Error Indicator for Compressible flows, Comptes Rendus Mécanique, 337, 4, 233-237 (2009) · Zbl 1173.76402
[14] Golay, F.; Helluy, P., Numerical Schemes for Low Mach Wave Breaking, International Journal of Computational Fluid Dynamics, 21, 2, 69-86 (2007) · Zbl 1184.76742 · doi:10.1080/10618560701343382#.VED5sDMcS9I
[15] Grilli, S.; Guyenne, P.; Dias, F., A Fully Non-Linear Model for Three-Dimensionnal Overturning Waves Over an Arbitrary Bottom, International Journal for Numerical Methods in Fluids, 35, 829-867 (2001) · Zbl 1039.76043
[16] Hachem, E.; Feghali, S.; Codina, R.; Coupez, T., Immersed Stress Method for Fluid Structure Interaction Using Anisotropic Mesh Adaptation, International Journal for Numerical Methods in Engineering, 94, 9, 805-825 (2013) · Zbl 1352.74108 · doi:10.1002/nme.4481
[17] Helluy, P.; Golay, F.; Caltagirone, J. P.; Lubin, P.; Vincent, S.; Drevrard, D.; Marcer, R.; al, et, Numerical Simulation of Wave Breaking, M2AN, 39, 3, 591-607 (2005) · Zbl 1130.76023
[18] Hsiao, S. C.; Lin, T. C., Tsunami-Like Solitary Waves impinging and Overtopping an Impermeable Seawall: Experiment and RANS Modeling, Coastal Engineering, 57, 1, 1-18 (2010)
[19] Hsu, T. W.; Hsieh, C. M.; Hwang, R. R., Using RANS to Simulate Vortex Generation and Dissipation Around Impermeable Submerged Double Breakwaters, Coastal Engineering, 51, 7, 557-579 (2004)
[20] Kleefsman, K. M.T.; Fekken, G.; Veldman, A. E.P.; Iwanowski, B.; Buchner, B., A Volume-of-Fluid Based Simulation Method for Wave Impact Problems, Journal of Computational Physics, 206, 1, 363-393 (2005) · Zbl 1087.76539
[21] Koshizuka, S.; Tamako, H.; Oka, Y., A Particle Method for Incompressible Viscous Flow with Fluid Fragmentations, Computational Fluid Dynamics Journal, 4, 1, 29-46 (1995)
[22] Lee, E. S.; Violeau, D.; Issa, R.; Ploix, S., Application of Weakly Compressible and Truly Incompressible SPH to 3-D Water Collapse in Waterworks, Journal of Hydraulic Research, 48, sup1, 50-60 (2010) · doi:10.1080/00221686.2010.9641245
[23] Losasso, F.; Gibou, F.; Fedkiw, R., Simulating Water and Smoke with an Octree Data Structure, ACM Transactions on Graphics, 23, 3, 457-462 (2004) · doi:10.1145/1015706.1015745
[24] Lubin, P.; Glockner, S., Detailed numerical investigation of the three-dimensional flow structures under breaking waves, 1127-1136
[25] Min, C.; Gibou, F., A Second Order Accurate Level Set Method on Non-Graded Adaptive Cartesian Grids, Journal of Computational Physics, 225, 1, 300-321 (2007) · Zbl 1122.65077
[26] Plumerault, L.-R.; Astruc, D.; Villedieu, P.; Maron, P., A Numerical Model for Aerated-Water Wave Breaking, International Journal for Numerical Methods in Fluids (2011) · doi:10.1002/fld.2667
[27] Sambe, A. N.; Sous, D.; Golay, F.; Fraunié, P.; Marcer, R., Numerical Wave Breaking with Macro-Roughness, European Journal of Mechanics - B/Fluids, 30, 6, 577-588 (2011) · Zbl 1258.76165
[28] Shi, F.; Kirby, J-. T.; Harris, J-. H.; Geiman, J-. D.; Grilli, S-. T., A High-Order Adaptive Time-Stepping TVD Solver for Boussinesq Modeling of Breaking Waves and Coastal Inundation, Ocean Modelling, 4344, 36-51 (2012)
[29] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), New York, NY: Springer, New York, NY · Zbl 0923.76004
[30] Vincent, S.; Balmigère, G.; Caltagirone, J.-P.; Meillot, E., Eulerian-Lagrangian Multiscale Methods for Solving Scalar Equations - Application to Incompressible Two-Phase Flows, Journal of Computational Physics, 229, 1, 73-106 (2010) · Zbl 1381.76364
[31] Wanner, G.; Hairer, E., Solving ordinary differential equations II, 1 (1991), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0729.65051
[32] Williamschen, M. J.; Groth, C. P.T., Parallel Anisotropic Block-Based Adaptive Mesh Refinement Algorithm For Three-Dimensional Flows, 1-22 · doi:10.2514/6.2013-2442
[33] Yiu, K. F.C.; Greaves, D. M.; Cruz, S.; Saalehi, A.; Borthwick, A. G.L., Quadtree Grid Generation: Information Handling, Boundary Fitting and CFD Applications, Computers & Fluids, 25, 8, 759-769 (1996) · Zbl 0892.76074
[34] Zhang, M.; Wu, W. M., A Two Dimensional Hydrodynamic and Sediment Transport Model for Dam Break Based on Finite Volume Method with Quadtree Grid, Applied Ocean Research, 33, 4, 297-308 (2011)
[35] Zhang, X. D.; Trépanier, J. Y.; Camarero, R., A Posteriori Error Estimation for Finite-Volume Solutions of Hyperbolic Conservation Laws, Computer Methods in Applied Mechanics and Engineering, 185, 1-19 (2000) · Zbl 0954.65071
[36] Zheng, Z. X.J.; Groth, C. P.T., Block-Based Adaptive Mesh Refinement Finite-Volume Scheme for Hybrid Multi-Block Meshes, 1-19 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.