×

Taitoko, an advanced code for tsunami propagation, developed at the French Tsunami Warning Centers. (English) Zbl 1493.76070

Summary: This paper presents the new version of the operational code used at the Tsunami Warning Centers in French Polynesia and in mainland France. This nested multigrid code solves either the nonlinear shallow water or the weakly nonlinear Boussinesq equations in a spherical or Cartesian coordinates system. The objective is to simulate the propagation of tsunamis both in the context of tsunami early warning and in the context of research. The originality of this code is to simulate the tsunami propagation through a series of nested grids in which the numerical scheme is specified by the user. Three standard finite-difference methods and two finite volume schemes are available to take into account the dispersive nature of waves or to capture flow discontinuities. The performance of the five numerical schemes has been assessed through idealized 1D and 2D test cases. The convergence rate with grid refinement is evaluated for three of these tests. Diffusion and dispersion of the five schemes are evaluated through the 1D far-field propagation in a channel of constant depth. Finally, two-dimensional simulations of the 2011 Japanese tsunami are performed considering a homogeneous tectonic source. Coastal inundation is simulated in the bay of Kamaishi where run-up heights reached 10 m. The ability of the five schemes to propagate trans-Pacific tsunamis is evaluated through comparisons of time series between simulations and observations at DART buoys. In the context of tsunami early warning, numerical results show that standard finite-difference methods reproduce most of the observed time gauges and that numerical errors associated to these schemes are acceptable.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Titov, V. V.; Gonzalez, F. I., Implementation and Testing of the Method of Splitting Tsunami (MOST) ModelTech. Memo. ERL PMEL, 112, 11 (1997), Gov. Print. Off.: Gov. Print. Off. Seattle, WA
[2] Imamura, F., Review of tsunami simulation with a finite-difference method, (Yeh, H.; Synolakis, C. E.; Liu, P. L.-F., Long Wave Runup Models (1996), World Scientific Publishing Co), 25-42
[3] Liu, P. L.; Woo, S. B.; Cho, Y. S., Computer Programs for Tsunami Propagation and Inundation1998. Report to the National Science Foundation (1998), Cornell University
[4] Wang, D.; Becker, N. C.; Walsh, D.; Fryer, G. J.; Weinstein, S. A.; McCreery, C. S.; Sardiña, V.; Hsu, V.; Hirshorn, B. F.; Hayes, G. P.; Duputel, Z.; Rivera, L.; Kanamori, H.; Koyanagi, K. K.; Shiro, B., Real-time forecasting of the April 11 2012 Sumatra tsunami, Geophys. Res. Lett., 39, Article L19601 pp. (2012)
[5] Jamelot, A.; Reymond, D., New Tsunami forecast tools for the French Polynesia tsunami warning system part II: Numerical modelling and tsunami height estimation, Pure Appl. Geophys., 172, 805-819 (2015)
[6] Kian, R.; Horrillo, J.; Zaytsev, A.; Yalciner, A. C., Capturing physical dispersion using a nonlinear shallow water model, J. Mar. Sci. Eng., 6, 84 (2018)
[7] Greenslade, D.; Babeyko, A.; Burbidge, D.; Ellguth, E.; Horspool, N.; Kumar, T. S.; Kumar, C. P.; Moore, C.; Rakowsky, N.; Riedlinger, T.; Ruangrassamee, A.; Srivihok, P.; Titov, V. V., An assessment of the diversity in scenario-based tsunami forecasts for the Indian Ocean, Cont. Shelf Res., 79 (2013)
[8] Roeber, V.; Cheung, K., Boussinesq-Type model for energetic breaking waves in fringing reef environments, Coast. Eng., 70, 1-20 (2012)
[9] Shi, F.; Kirby, J. T.; Tehranirad, B., Tsunami Benchmark Results for Spherical Coordinate Version of FUNWAVE-TVD (Version 1.1)Research Report No. CACR-12-02 (2012), Center for Applied Coastal Research, University of Delaware: Center for Applied Coastal Research, University of Delaware Newark
[10] Shi, F.; Kirby, J. T.; Harris, J.; Geiman, J.; Grilli, S., A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation, Ocean Model., 43-44, 36-51 (2012)
[11] Kirby, J. T.; Fengyan, S.; Tehranirad, B.; Harris, J. C.; Grilli, S. T., Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects, Ocean Model., 62, 39-55 (2013)
[12] Lynett, P. J.; Wu, T.-R.; Liu, P. L.-F., Modeling wave runup with depth-integrated equations, Coastal Eng., 46, 89-107 (2002)
[13] Kazolea, M.; Delis, A. I.; Nikolos, I. K.; Synolakis, C. E., An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coastal Eng., 69, 42-66 (2012)
[14] Hou, J.; Liang, Q.; Zhang, H.; Hinkelmann, R., An efficient unstructured MUSCL scheme for solving the 2D shallow water equations, Environ. Model. Softw., 66, 131-152 (2015)
[15] Dutykh, D.; Poncet, R.; Dias, F., The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation, Eur. J. Mech. B Fluids, 30, 598-615 (2011) · Zbl 1258.76036
[16] Giles, D.; Kashdan, E.; Salmanidou, D.; Guillas, S.; Dias, F., Performance analysis of Volna-OP2 massively parallel code for tsunami modelling, Comput. & Fluids, 209 (2020) · Zbl 1521.76004
[17] Glimsdal, S.; Pedersen, G. K.; Harbitz, C. B.; Løvholt, F., Dispersion of tsunamis: does it really matter?, Nat. Hazards Syst. Sci., 13, 1507-1526 (2013)
[18] Kirby, J. T.; Fengyan, S.; Tehranirad, B.; Harris, J. C.; Grilli, S. T., Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects, Ocean Model., 62, 39-55 (2013)
[19] Baba, T.; Allgeyer, S.; Hossen, J.; Cummins, P. R.; Tsushima, H.; Imai, K.; Kato, T., Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change, Ocean Model., 111, 46-54 (2017)
[20] Yamazaki, Y.; Cheung, K. F.; Lay, T., A self-consistent fault slip model for the 2011 Tohoku earthquake and tsunami, J. Geophys. Res.: Solid Earth, 123, 1435-1458 (2018)
[21] Saito, T.; Inazu, D.; Miyoshi, T.; Hino, R., Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami, J. Geophys. Res. Oceans, 119, 5160-5180 (2014)
[22] Grilli, S. T.; Ioualalen, M.; Asavanant, J.; Shi, F.; Kirby, J.; Watts, P., Source constraints and model simulation of the December 26, 2004 Indian Ocean Tsunami, J. Waterw. Port Coast. Ocean. Eng., 133, 6, 414-428 (2007)
[23] Imamura, F.; Goto, C., Truncation error in numerical tsunami simulation by the finite difference method, (Coastal Eng. in Japan, vol. 31 (1988), JSCE), 245-263
[24] Yoon, S. B.; Lim, C. H.; Choi, J., Dispersion-correction finite difference model for simulation of transoceanic tsunamis, Terr. Atmos. Ocean. Sci., 18, 31-53 (2007)
[25] Zhou, H.; Wei, Y.; Titov, V. V., Dispersive modelling of the 2009 Samoa Tsunami, Geophys. Res. Lett., 39, 16, Article L16603 pp. (2012)
[26] Okal, E. A.; Synolakis, C. E., Sequencing of tsunami waves: why the first wave is not always the largest?, Geophys. J. Int., 204, 719-735 (2016)
[27] Løvholt, F.; Pedersen, G.; Gisler, G., Oceanic propagation of a potential tsunami from the La Palma island, J. Geophys. Res. Oceans, 113, Article C09026 pp. (2008)
[28] Zhou, H.; Moore, C. W.; Wei, Y.; Titov, V. V., A nested-grid Boussinesq-type approach to modelling dispersive propagation and runup of landslide-generated tsunamis, Nat. Hazards Earth Syst. Sci, 11, 10, 2677-2697 (2011)
[29] Liu, W.; Ning, Y.; Shi, F.; Sun, Z., A 2DH fully dispersive and weakly nonlinear Boussinesq-type model based on a finite-volume and finite-difference TVD-type scheme, Ocean Model., 147 (2020), https://doi.org/10.1016/j.ocemod.2019.101559
[30] Yamazaki, Y.; Cheung, K. F.; Kowalik, Z., Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up, Internat. J. Numer. Methods Fluids, 67, 2081-2107 (2011) · Zbl 1455.76202
[31] Macías, J.; Castro, M. J.; Ortega, S.; Escalante, C.; González Vida, J. M., Performance benchmarking of Tsunami-HySEA model for NTHMP’s inundation mapping activities, Pure Appl. Geophys, 174, 1-37 (2017)
[32] Kowalik, Z.; Knight, W.; Logan, T.; Whitmore, P., Numerical modeling of the global tsunami: Indonesian tsunami of 26 2004, Sci. Tsunami Hazards, 23, 1, 40-56 (2005)
[33] Peregrine, D. H., Long waves on a beach, J. Fluid Mech., 77, 417-431 (1967) · Zbl 0163.21105
[34] Nwogu, O., Alternative form of Boussinesq equations for nearshore wave propagation, J. Waterw. Port Coast. Ocean. Eng., 119, 6, 618-638 (1993)
[35] Madsen, P. A.; Sørensen, O. R., A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2: A slowing varying bathymetry, Coastal Eng., 18, 183-204 (1992)
[36] Pedersen, G.; Løvholt, F., Documentation of a global Boussinesq solver, Preprint Series in Applied Mathematics 1 (2008), Dept. of Mathematics, University of Oslo: Dept. of Mathematics, University of Oslo Norway, available at: http://urn.nb.no/URN:NBN:no-27775
[37] Baba, T.; Takahashi, N.; Kaneda, Y.; Ando, K.; Matsuoka, D.; Kato, T., Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku Tsunami, Pure Appl. Geophys., 172, 12, 3455-3472 (2015)
[38] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes: The Art of Scientific Computing? (1986), Cambridge University Press: Cambridge University Press Cambridge, New York · Zbl 0587.65003
[39] Toro, E. F.; Garcia-Navarro, P., Godunov-type methods for free-surface shallow flows: a review, J. Hydraul. Res., 45, 736-751 (2009)
[40] Heuzé, O.; Jaouen, S.; Jourdren, H., Dissipative issue of high-order shock capturing schemes with non-convex equations of state, J. Comput. Phys., 228, 833-860 (2009) · Zbl 1195.76265
[41] Audusse, E.; Bouchut, F.; Bristeau, M.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25, 6, 2050-2065 (2004) · Zbl 1133.65308
[42] Heinrich, P.; Piatanesi, A.; Hébert, H., Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua-New Guinea event, Geophys. J. Int., 144, 97-111 (2001)
[43] Lax, P. D.; Wendroff, B., Systems of conservation laws, Comm. Pure Appl. Math., 13, 2, 217-237 (1960) · Zbl 0152.44802
[44] Kazolea, M.; Delis, A. I., A well-balanced shock-capturing hybrid finite volume-finite difference numerical scheme for extended 1D Boussinesq models, Appl. Numer. Math., 67, 167-186 (2013) · Zbl 1308.76185
[45] Kim, K.; Kim, C., Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part I Spatial discretization, J. Comput. Phys., 208, 527-569 (2005) · Zbl 1329.76264
[46] Harten, A.; Lax, P.-D.; Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 53-61 (1983) · Zbl 0565.65051
[47] Son, S.; Lynett, P.; Kim, D.-H., Nested and multi-physics modeling of tsunami evolution from generation to inundation, Ocean Model., 38, 96-113 (2011)
[48] Okada, Y., Surface deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc. Am., 75, 4, 1135-1154 (1985)
[49] Tanioka, Y.; Satake, K., Tsunami generation by horizontal displacement of ocean bottom, Geophys. Res. Lett., 23, 8, 861-864 (1996)
[50] Kajiura, K., Leading Wave of a Tsunami, 535-571 (1963), Bulletin Earthquake Research Institute, Tokyo University
[51] Delestre, O.; Lucas, C.; Ksinant, P.-A.; Darboux, F.; Laguerre, C.; Vo, T. N.T.; James, F.; Cordier, S., SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies, Internat. J. Numer. Methods Fluids, 72, 3, 269-300 (2013) · Zbl 1455.76005
[52] Thacker, W. C., Some exact solutions to the nonlinear shallow-water wave equations, J. Fluid Mech., 107, 499-508 (1981) · Zbl 0462.76023
[53] Yamazaki, Y.; Kowalik, Z.; Cheung, K. F., Depth-integrated, non-hydrostatic model for wave breaking and run-up, Internat. J. Numer. Methods Fluids, 61, 473-497 (2009) · Zbl 1172.76036
[54] Hammack, J. L., A note on tsunamis: Their generation and propagation in an ocean of uniform depth, J. Fluid Mech., 60, 769-799 (1973) · Zbl 0273.76010
[55] Sozdinler, C.; Yalciner, A.; Zaytsev, A.; Suppasri, A.; Imamura, F., Investigation of hydrodynamic parameters and the effects of breakwaters during the 2011 Great East Japan Tsunami in Kamaishi Bay, Pure Appl. Geophys., 172, 12 (2015)
[56] T. Tomita, G.-S. and Yoem, Tsunami damage in ports by the 2011 off Pacific coast of Tohuku earthquake. in: Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, 2012.
[57] Duputel, Z.; Rivera, L.; Kanamori, H.; Hayes, G. P.; Hirshorn, B.; Weinstein, S., Realtime W phase inversion during the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 535-539 (2011)
[58] Satake, K.; Fujii, Y.; Harada, T.; Namegaya, Y., Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data, Bull. Seismol. Soc. Am., 103, 1473-1492 (2013)
[59] Wang, D., An ocean depth-correction method for reducing model errors in tsunami travel time, Sci. Tsunami Hazards, 34, 1, 1-22 (2015)
[60] Poupardin, A.; Heinrich, P.; Hébert, H.; Schindelé, F.; Jamelot, A.; Reymond, D.; Sugioka, H., Traveltime delay relative to the maximum energy of the wave train for dispersive tsunamis propagating across the Pacific Ocean: the case of 2010 and 2015 Chilean sunamis, Geophys. J. Int., 214, 3, 1538-1555 (2018)
[61] Jamelot, A.; Gailler, A.; Heinrich, P.; Vallage, A.; Champenois, J., Tsunami simulations of the Sulawesi Mw 7.5 event: Comparison of seismic sources issued from a tsunami warning context versus post-event finite source, Pure Appl. Geophys., 176, 8, 3351-3376 (2019)
[62] Hébert, H.; Heinrich, P.; Schindelé, F.; Piatanesi, A., Far-field simulation of tsunami propagation in the Pacific Ocean: impact on the Marquesas Islands (French Polynesia), J. Geophys. Res. Ocean., 106, C5, 9161-9177 (2001)
[63] Shi, F.; Malej, M.; Smith, J. M.; Kirby, J. T., Breaking of ship bores in a Boussinesq-type ship-wake model, Coastal Eng., 132, 1-12 (2018)
[64] Allgeyer, S.; Cummins, P., Numerical tsunami simulation including elastic loading and seawater density stratification, Geophy. Res. Lett., 41, 2368-2375 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.