×

Slim curves, limit sets and spherical CR uniformisations. (English) Zbl 07926805

Summary: We consider the 3-sphere \(\mathbb{S}^3\) seen as the boundary at infinity of the complex hyperbolic plane \(\mathbf{H}_{\mathbb{C}}^2\). It comes equipped with a contact structure and two classes of special curves. First, \(\mathbb{R}\)-circles are boundaries at infinity of totally real totally geodesic subspaces and are tangent to the contact distribution. Second, \(\mathbb{C}\)-circles are boundaries of complex totally geodesic subspaces and are transverse to the contact distribution. We define a quantitative notion, called slimness, that measures to what extent a continuous path in the sphere \(\mathbb{S}^3\) is near to being an \(\mathbb{R}\)-circle. We analyse the classical foliation of the complement of an \(\mathbb{R}\)-circle by arcs of \(\mathbb{C}\)-circles. Next, we consider deformations of this situation where the \(\mathbb{R}\)-circle becomes a slim curve. We apply these concepts to the particular case where the slim curve is the limit set of a quasi-Fuchsian subgroup of PU(2,1). As an application, we describe a class of spherical CR uniformisations of certain cusped 3-manifolds.

MSC:

22E40 Discrete subgroups of Lie groups
32V05 CR structures, CR operators, and generalizations
32V15 CR manifolds as boundaries of domains
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds

References:

[1] M. Acosta, Spherical CR Dehn surgeries. Pacific J. Math. 284 (2016), no. 2, 257-282 Zbl 1348.32016 MR 3544300 · Zbl 1348.32016 · doi:10.2140/pjm.2016.284.257
[2] M. Acosta, Character varieties for real forms. Geom. Dedicata 203 (2019), 257-277 Zbl 1475.20012 MR 4027594 · Zbl 1475.20012 · doi:10.1007/s10711-019-00435-3
[3] M. Acosta, Spherical CR uniformization of Dehn surgeries of the Whitehead link complement. Geom. Topol. 23 (2019), no. 5, 2593-2664 Zbl 1428.32009 MR 4019899 · Zbl 1428.32009 · doi:10.2140/gt.2019.23.2593
[4] R. Alexandre, V. Cornet, A. Guilloux, and T. T. Q. Nguyen, A landscape of limit sets deform-ations. http://limit-sets.imj-prg.fr/ visited on 9 April 2024
[5] R. V. Alexandre, Redundancy of triangle groups in spherical CR representations. Exp. Math. 32 (2023), no. 4, 701-721 Zbl 07772722 MR 4669290 · Zbl 1530.32013 · doi:10.1080/10586458.2021.1985655
[6] M. Bourdon, Actions quasi-convexes d’un groupe hyperbolique, flot géodésique. Ph.D. thesis, Université Paris-Sud, 1993
[7] B. H. Bowditch, Geometrical finiteness with variable negative curvature. Duke Math. J. 77 (1995), no. 1, 229-274 Zbl 0877.57018 MR 1317633 · Zbl 0877.57018 · doi:10.1215/S0012-7094-95-07709-6
[8] B. H. Bowditch, A topological characterisation of hyperbolic groups. J. Amer. Math. Soc. 11 (1998), no. 3, 643-667 Zbl 0906.20022 MR 1602069 · Zbl 0906.20022 · doi:10.1090/S0894-0347-98-00264-1
[9] M. Burger and A. Iozzi, Boundary maps in bounded cohomology. Appendix to: “Continuous bounded cohomology and applications to rigidity theory”. Geom. Funct. Anal. 12 (2002), no. 2, 281-292 Zbl 1006.22011 MR 1911668 · Zbl 1006.22011 · doi:10.1007/s00039-002-8246-8
[10] M. Burger and A. Iozzi, Bounded cohomology and totally real subspaces in complex hyper-bolic geometry. Ergodic Theory Dynam. Systems 32 (2012), no. 2, 467-478 Zbl 1318.32026 MR 2901355 · Zbl 1318.32026 · doi:10.1017/S0143385711000393
[11] D. Burns Jr. and S. Shnider, Spherical hypersurfaces in complex manifolds. Invent. Math. 33 (1976), no. 3, 223-246 Zbl 0357.32012 MR 0419857 · Zbl 0357.32012 · doi:10.1007/BF01404204
[12] D. Calegari, Filling geodesics and hyperbolic complements. 2012, https://lamington.wordpress .com/2012/02/11/filling-geodesics-and-hyperbolic-complements/ visited on 9 April 2024
[13] S. S. Chen and L. Greenberg, Hyperbolic spaces. In Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 49-87, Academic Press, New York, 1974 Zbl 0295.53023 MR 0377765 · Zbl 0295.53023
[14] P. Dehornoy, Le complémentaire du huit dans T 1 0I3;3;
[15] M. Deraux, On spherical CR uniformization of 3-manifolds. Exp. Math. 24 (2015), no. 3, 355-370 Zbl 1408.32035 MR 3359222 · Zbl 1408.32035 · doi:10.1080/10586458.2014.996835
[16] M. Deraux and E. Falbel, Complex hyperbolic geometry of the figure-eight knot. Geom. Topol. 19 (2015), no. 1, 237-293 Zbl 1335.32028 MR 3318751 · Zbl 1335.32028 · doi:10.2140/gt.2015.19.237
[17] Y. M. Eliashberg and W. P. Thurston, Confoliations. Univ. Lecture Ser. 13, American Math-ematical Society, Providence, RI, 1998 Zbl 0893.53001 MR 1483314 · Zbl 0893.53001 · doi:10.1090/ulect/013
[18] E. Falbel, A. Guilloux, and P. Will, Hilbert geometry without convexity. J. Geom. Anal. 30 (2020), no. 3, 2865-2896 Zbl 1441.52009 MR 4105139 · Zbl 1441.52009 · doi:10.1007/s12220-020-00426-x
[19] E. Falbel and P.-V. Koseleff, A circle of modular groups in PU.2; 1/. Math. Res. Lett. 9 (2002), no. 2-3, 379-391 Zbl 1008.20038 MR 1909651 · Zbl 1008.20038 · doi:10.4310/MRL.2002.v9.n3.a11
[20] E. Falbel and J. R. Parker, The moduli space of the modular group in complex hyperbolic geometry. Invent. Math. 152 (2003), no. 1, 57-88 Zbl 1160.32306 MR 1965360 · Zbl 1160.32306 · doi:10.1007/s00222-002-0267-2
[21] P. Foulon and B. Hasselblatt, Contact Anosov flows on hyperbolic 3-manifolds. Geom. Topol. 17 (2013), no. 2, 1225-1252 Zbl 1277.37057 MR 3070525 · Zbl 1277.37057 · doi:10.2140/gt.2013.17.1225
[22] W. M. Goldman, Geometric structures on manifolds and varieties of representations. In Geo-metry of group representations (Boulder, CO, 1987), pp. 169-198, Contemp. Math. 74, Amer-ican Mathematical Society, Providence, RI, 1988 Zbl 0659.57004 MR 0957518 · Zbl 0659.57004 · doi:10.1090/conm/074/957518
[23] W. M. Goldman, Complex hyperbolic geometry. Oxford Math. Monogr., Oxford University Press, New York, 1999 Zbl 0939.32024 MR 1695450 · Zbl 0939.32024
[24] W. M. Goldman, M. Kapovich, and B. Leeb, Complex hyperbolic manifolds homotopy equi-valent to a Riemann surface. Comm. Anal. Geom. 9 (2001), no. 1, 61-95 Zbl 0982.32024 MR 1807952 · Zbl 0982.32024 · doi:10.4310/CAG.2001.v9.n1.a3
[25] O. Guichard and A. Wienhard, Anosov representations: domains of discontinuity and applica-tions. Invent. Math. 190 (2012), no. 2, 357-438 Zbl 1270.20049 MR 2981818 · Zbl 1270.20049 · doi:10.1007/s00222-012-0382-7
[26] N. Gusevskii and J. R. Parker, Complex hyperbolic quasi-Fuchsian groups and Toledo’s invari-ant. Geom. Dedicata 97 (2003), 151-185 Zbl 1042.57023 MR 2003696 · Zbl 1042.57023 · doi:10.1023/A:1023616618854
[27] Y. Jiang, J. Wang, and B. Xie, A uniformizable spherical CR structure on a two-cusped hyper-bolic 3-manifold. Algebr. Geom. Topol. 23 (2023), no. 9, 4143-4184 Zbl 07775431 MR 4670994 · Zbl 1533.57049 · doi:10.2140/agt.2023.23.4143
[28] F. Kassel, Geometric structures and representations of discrete groups. In Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. II. Invited lectures, pp. 1115-1151, World Scientific Publishing, Hackensack, NJ, 2018 Zbl 1447.57028 MR 3966802 · Zbl 1447.57028 · doi:10.1142/9789813272880_0090
[29] V. Koziarz and J. Maubon, Maximal representations of uniform complex hyperbolic lattices. Ann. of Math. (2) 185 (2017), no. 2, 493-540 Zbl 1367.22004 MR 3612003 · Zbl 1367.22004 · doi:10.4007/annals.2017.185.2.3
[30] F. Labourie, Anosov flows, surface groups and curves in projective space. Invent. Math. 165 (2006), no. 1, 51-114 Zbl 1103.32007 MR 2221137 · Zbl 1103.32007 · doi:10.1007/s00222-005-0487-3
[31] J. Ma and B. Xie, Spherical CR uniformization of the magic 3-manifold. [v1] 2021, [v2] 2023, arXiv:2106.06668v2
[32] J. R. Parker and I. D. Platis, Complex hyperbolic quasi-Fuchsian groups. In Geometry of Riemann surfaces, pp. 309-355, London Math. Soc. Lecture Note Ser. 368, Cambridge Uni-versity Press, Cambridge, 2010 Zbl 1204.57015 MR 2665016 · Zbl 1204.57015
[33] J. R. Parker, J. Wang, and B. Xie, Complex hyperbolic .3; 3; n/ triangle groups. Pacific J. Math. 280 (2016), no. 2, 433-453 Zbl 1341.20029 MR 3453571 · Zbl 1341.20029 · doi:10.2140/pjm.2016.280.433
[34] J. R. Parker and P. Will, A complex hyperbolic Riley slice. Geom. Topol. 21 (2017), no. 6, 3391-3451 Zbl 1439.20062 MR 3692969 · Zbl 1439.20062 · doi:10.2140/gt.2017.21.3391
[35] M. B. Pozzetti, A. Sambarino, and A. Wienhard, Conformality for a robust class of non-conformal attractors. J. Reine Angew. Math. 774 (2021), 1-51 Zbl 1483.37037 MR 4250471 · Zbl 1483.37037 · doi:10.1515/crelle-2020-0029
[36] R. E. Schwartz, Complex hyperbolic triangle groups. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 339-349, Higher Education Press, Beijing, 2002 Zbl 1022.53034 MR 1957045 · Zbl 1022.53034
[37] R. E. Schwartz, Real hyperbolic on the outside, complex hyperbolic on the inside. Invent. Math. 151 (2003), no. 2, 221-295 Zbl 1039.32030 MR 1953259 · Zbl 1039.32030 · doi:10.1007/s00222-002-0245-8
[38] R. E. Schwartz, Spherical CR geometry and Dehn surgery. Ann. of Math. Stud. 165, Princeton University Press, Princeton, NJ, 2007 Zbl 1116.57016 MR 2286868 · Zbl 1116.57016 · doi:10.1515/9781400837199
[39] D. Toledo, Representations of surface groups in complex hyperbolic space. J. Differential Geom. 29 (1989), no. 1, 125-133 Zbl 0676.57012 MR 0978081 · Zbl 0676.57012 · doi:10.4310/jdg/1214442638
[40] M. Weber, Fundamentalbereiche komplex hyperbolischer Flächen. Bonner Mathematische Schriften 254, Universität Bonn, Mathematisches Institut, Bonn, 1993 Zbl 0837.55008 MR 1286943 · Zbl 0837.55008
[41] P. Will, Two-generator groups acting on the complex hyperbolic plane. In Handbook of Teich-müller theory. Vol. VI, pp. 275-334, IRMA Lect. Math. Theor. Phys. 27, Eur. Math. Soc., Zürich, 2016 Zbl 1345.30067 MR 3618192. · Zbl 1345.30067 · doi:10.4171/161-1/10
[42] Grenoble, France; antonin.guilloux@imj-prg.fr Pierre Will Université Grenoble Alpes, CNRS, IF, 38000 Grenoble, France; pierre.will@univ-grenoble-alpes.fr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.