×

Univalent functions with range restrictions. (English) Zbl 0981.30009

Let \(\Sigma\) be the usual class of functions analytic and univalent in \(|z|> 1\) with series development about infinity of the form \(f(z) = z + a_0 + a_{-1}z^{-1} + \dots\). In this paper, the author investigates the extremal problem max Re \(a_{-1}\) in two special subclasses of \(\Sigma\). The first is the class \(\Sigma(\pm w_1)\) consisting of those \(f \in \Sigma\) which omit the values \(\pm w_1\). The second is the class \(\Sigma_b^0\) of all \(f \in \Sigma\) with \(a_0 = 0\) and such that the set of values omitted by \(f\) is of width greater than or equal to \(b\) in the imagionary direction. The paper includes a careful analysis of these problems and their relationship. A differential equation for the extremal function for the first problem is obtained in terms of \(w\) and \(\zeta = z + 1/z\). Interestingly,this is obtained by using the variational method for Bieberbach-Eilenberg functions. The quadratic differentials defined by this differential equation are analyzed most carefully. The work appears to be complete and correct. The problems are of some value and this paper deserves careful study.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C70 Extremal problems for conformal and quasiconformal mappings, variational methods
30C85 Capacity and harmonic measure in the complex plane

References:

[1] Gaier, D.: Konstruktive Methoden der konformen Abbildung. Berlin - Gottingen - Heidel- berg: Springer-Verlag 1964. · Zbl 0132.36702
[2] Goluzin, C. M.: Iteration processes for conformal mappings of multiply-connected do- mains. Rec. Math. (Mat.Shornik) 6 (1939), 377 - 382.
[3] Crötzsch, 11.: Ober das i’arallelschlitztheorern der konforrnen Abbildung schlichter Berei- che. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Klasse 84 (1932), 15 - 36.
[4] Hummel, J. A.: Lagrange multipliers in variational methods for univalent functions. J. Analyse Math. 32 (1977), 222 - 234. · Zbl 0372.30014 · doi:10.1007/BF02803581
[5] Hummel, J. A. and M. Schiffer: Variational methods for Bieberbach-Eilenberg functions and for pairs. Ann. Acad. Sd. Fenn. Ser. A. I. Math. 3 (1977), 3 - 42. · Zbl 0379.30011
[6] Pirl, U.: Ober die geometrische Gestalt eines Extremalkontinuums aus der Theorie der konforrnen Abbildung. Math. Nachr. 39 (1969), 297 - 312. · Zbl 0202.07202 · doi:10.1002/mana.19690390408
[7] Pommerenke, Ch.: Univalent Functions. Göttingen: Vandenhoeck und Ruprecht 1975. · Zbl 0283.30034
[8] Schiffer, M.: A method of variations within the family of simple functions. Proc. London Math. Soc. (2) 44 (1938), 432 - 449. · Zbl 0019.22201 · doi:10.1112/plms/s2-44.6.432
[9] Schiffer, M.: Extrernum problems and variational methods in conformal mapping. In: Proc. Int. Congress Math. Edinburgh. New York: Cambridge Univ. Press 1958, pp. 211 - 231. · Zbl 0122.31801
[10] Tsuji, M.: Potential Theory in Modern Function Theory. Tokyo: Maruzen 1959. · Zbl 0087.28401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.