×

Review of options for structural design sensitivity analysis. I: Linear systems. (English) Zbl 1091.74040

Summary: The paper reviews options for structural design sensitivity analysis, including global finite differences, continuum derivatives, discrete derivatives, and computational or automated differentiation. The objective is to put these different approaches to design sensitivity analysis in the context of accuracy and consistency, computational cost, and implementation options and effort. Linear static analysis and transient dynamic analysis are reviewed. In a separate appendix, special attention is paid to the semi-analytical method. A future paper will address design sensitivity analysis in nonlinear structural problems.

MSC:

74P99 Optimization problems in solid mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Haftka, R. T.; Adelman, H. M., Recent developments in structural sensitivity analysis, Struct. Optim., 1, 137-151 (1989)
[2] Kwak, B. M., A review on shape optimal design and sensitivity analysis, Struct. Engrg./Earthq. Engrg., 10, 4, 159s-174s (1994)
[3] Hsu, Y. L., A review of structural shape optimization, Comput. Ind., 26, 3-13 (1994)
[4] Newman, J. C.; Taylor, A. C.; Barnwell, R. W.; Newman, P. A.; Hou, G. J.W., Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations, J. Aircraft, 36, 1, 87-96 (1999)
[5] Kleijnen, J. P.C., Sensitivity analysis and related analyses: a review of some statistical techniques, J. Statist. Comput. Simul., 57, 111-142 (1997) · Zbl 1102.62314
[6] Choi, K. K.; Kim, N. H., Structural Sensitivity Analysis and Optimization, Linear Systems, vol. 1 (2004), Springer-Verlag: Springer-Verlag New York
[7] Choi, K. K.; Kim, N. H., Structural Sensitivity Analysis and Optimization, Nonlinear Systems and Applications, vol. 2 (2004), Springer-Verlag: Springer-Verlag New York
[8] Sobieszczanski-Sobieski, J., Sensitivity of complex, internally coupled systems, AIAA J., 28, 1, 153-160 (1990)
[9] A.A. Guinta, Sensitivity analysis for coupled aero-structural systems, Technical Report TM-1999-209367, NASA, 1999.; A.A. Guinta, Sensitivity analysis for coupled aero-structural systems, Technical Report TM-1999-209367, NASA, 1999.
[10] G.J.-W. Hou, A. Satyanarayana, Analytical sensitivity analysis of a static aeroelastic wing, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4824, 6-8 September 2000, Long Beach, CA.; G.J.-W. Hou, A. Satyanarayana, Analytical sensitivity analysis of a static aeroelastic wing, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4824, 6-8 September 2000, Long Beach, CA.
[11] K. Maute, M. Nikbay, C. Farhat, Analytically based sensitivity analysis and optimization of nonlinear aeroelastic systems, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4825, 6-8 September 2000, Long Beach, CA.; K. Maute, M. Nikbay, C. Farhat, Analytically based sensitivity analysis and optimization of nonlinear aeroelastic systems, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4825, 6-8 September 2000, Long Beach, CA. · Zbl 1078.74633
[12] Saurin, V. V., Shape design sensitivity analysis for fracture conditions, Comput. Struct., 76, 399-405 (2000)
[13] Taroco, E., Shape sensitivity analysis in linear elastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 188, 697-712 (2000) · Zbl 0964.74047
[14] Feijóo, R. A.; Padra, C.; Saliba, R.; Taroco, E.; Vénere, M. J., Shape sensitivity analysis for energy release rate evaluation and its application to the study of three-dimensional cracked bodies, Comput. Methods Appl. Mech. Engrg., 188, 649-664 (2000) · Zbl 0965.74049
[15] Kim, N. H.; Dong, J.; Choi, K. K.; Vlahopoulos, N.; Ma, Z.-D.; Castanier, M. P.; Pierre, C., Design sensitivity analysis for sequential structural-acoustic problems, J. Sound Vib., 263, 3, 569-591 (2003)
[16] Kim, N. H.; Dong, J.; Choi, K. K., Energy flow analysis and design sensitivity of structural problems at high frequencies, J. Sound Vib., 269, 1-2, 213-250 (2004)
[17] Choi, K. K.; Shim, I.; Wang, S., Design sensitivity analysis of structure-induced noise and vibration, J. Vib. Acoust., 119, 173-179 (1997)
[18] Papadrakakis, M.; Tsompanakis, Y.; Hinton, E.; Sienz, J., Advanced solution methods in topology optimization and shape sensitivity analysis, Engrg. Comput., 13, 5, 57-90 (1996) · Zbl 0983.74527
[19] Maute, K.; Nikbay, M.; Farhat, C., Sensitivity analysis and design optimization of three-dimensional non-linear aeroelastic systems by the adjoint method, Int. J. Numer. Methods Engrg., 56, 6, 911-933 (2003) · Zbl 1078.74633
[20] Kim, T. S.; Kim, J. E.; Kim, Y. Y., Parallelized structural topology optimization for eigenvalue problems, Int. J. Solid Struct., 41, 9-10, 2623-2641 (2004) · Zbl 1086.74030
[21] Leary, S. J.; Bhaskar, A.; Keane, A. J., Global approximation and optimization using adjoint computational fluid dynamics codes, AIAA J., 42, 3, 631-641 (2004)
[22] O.O. Storaasli, D.T. Nguyen, M. Baddourah, J. Qin, Computational mechanics analysis tools for parallel-vector supercomputers, in: 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, La Jolla, CA, USA, 19-22 April 1993, AIAA, pp. 772-778.; O.O. Storaasli, D.T. Nguyen, M. Baddourah, J. Qin, Computational mechanics analysis tools for parallel-vector supercomputers, in: 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, La Jolla, CA, USA, 19-22 April 1993, AIAA, pp. 772-778.
[23] Watson, B. C.; Noor, A. K., Sensitivity analysis of frictional contact/impact response on distributed-memory computers, Comput. Struct., 65, 6, 881-891 (1997) · Zbl 0933.74526
[24] Takewaki, I.; Uetani, K., Efficient redesign of damped large structural systems via domain decomposition with exact dynamic condensation, Comput. Methods Appl. Mech. Engrg., 178, 3, 367-382 (1999) · Zbl 0978.74031
[25] Aleksa, M.; Russenschuck, S.; Vollinger, C., Parametric quadrilateral meshes for the design and optimization of superconducting magnets, IEEE Trans. Appl. Supercond., 12, 1, 1404-1407 (2002)
[26] Schemit, L. A.; Lai, Y. C., Structural optimization based on preconditioned conjugate gradient analysis methods, Int. J. Numer. Methods Engrg., 37, 6, 943-964 (1994) · Zbl 0800.73269
[27] Vuik, C., Fast iterative solvers for the discretized incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 22, 195-210 (1996) · Zbl 0863.76061
[28] Vuik, C.; Segal, A.; Meijerink, J. A., An efficient preconditioned cg method for the solution of a class of layered problems with extreme contrasts in the coefficients, J. Comput. Phys., 152, 385-403 (1999) · Zbl 0945.76048
[29] Frank, J.; Vuik, C., On the construction of deflation-based preconditioners, SIAM J. Sci. Comput., 23, 2, 442-462 (2001) · Zbl 0997.65072
[30] Akgün, M. A.; Garcelon, J. H.; Haftka, R. T., Fast exact linear and nonlinear structural reanalysis and the Sherman-Morrison-Woodbury formulas, Int. J. Numer. Methods Engrg., 50, 7, 1587-1606 (2001) · Zbl 0971.74076
[31] Yoon, B. G.; Belegundu, A. D., Iterative methods for design sensitivity analysis, AIAA J., 26, 11, 1413-1415 (1988)
[32] Kirsch, U.; Liu, S., Structural reanalysis for general layout modifications, AIAA J., 35, 382-388 (1997) · Zbl 0896.73038
[33] Oral, S., An improved semianalytical method for sensitivity analysis, Struct. Optim., 11, 67-69 (1996)
[34] Hörnlein, H. R.E. M., Effiziente semi-analytische gradientenberechnung in der strukturoptimierung, Z. Angew. Math. Mech., 81, s669-s670 (2000) · Zbl 0935.76538
[35] Kirsch, U., Design-oriented analysis: a unified approach (2002), Kluwer · Zbl 1011.74003
[36] Haftka, R. T., Semi-analytical static nonlinear structural sensitivity analysis, AIAA J., 31, 1307-1312 (1993) · Zbl 0781.73045
[37] Lee, B. Y., Consideration of body forces in axisymmetric design sensitivity analysis using the BEM, Comput. Struct., 61, 4, 587-596 (1996) · Zbl 0900.73906
[38] Lee, B. Y., Direct differentiation formulation for boundary element shape sensitivity analysis of axisymmetric elastic solids, Int. J. Solid Struct., 34, 1, 99-112 (1997) · Zbl 0947.74579
[39] N.H. Kim, K.K. Choi, Design sensitivity analysis and optimization of nonlinear transient dynamics, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4905, 6-8 September 2000, Long Beach, CA.; N.H. Kim, K.K. Choi, Design sensitivity analysis and optimization of nonlinear transient dynamics, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4905, 6-8 September 2000, Long Beach, CA.
[40] Navarrina, F.; López-Fontán, S.; Colominas, I.; Bendito, E.; Casteleiro, M., High order shape design sensitivities: a unified approach, Comput. Methods Appl. Mech. Engrg., 188, 681-696 (2000) · Zbl 0983.74049
[41] Choi, K. K.; Duan, W., Design sensitivity analysis and shape optimization of structural components with hyperelastic material, Comput. Methods Appl. Mech. Engrg., 187, 219-243 (2000) · Zbl 0980.74048
[42] Mukherjee, S.; Shi, X.; Mukherjee, Y. X., Internal variables and their sensitivities in three-dimensional linear elasticity by the boundary contour method, Comput. Methods Appl. Mech. Engrg., 187, 289-306 (2000) · Zbl 1011.74077
[43] Tortorelli, D. A.; Haber, R. B.; Lu, S. C.-Y., Adjoint sensitivity analysis for nonlinear dynamic thermoelastic systems, AIAA J., 29, 2, 253-263 (1991)
[44] Arora, J. S.; Lee, T.-H.; Cardoso, J. B., Structural shape sensitivity analysis: relationship between material derivative and control volume approaches, AIAA J., 30, 6, 1638-1648 (1992) · Zbl 0761.73075
[45] Arora, J. S., An exposition of the material derivative approach for structural shape sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 105, 41-62 (1993) · Zbl 0771.73057
[46] Phelan, D. G.; Haber, R. B., Sensitivity analysis of linear elastic systems using domain parametrization and a mixed mutual energy principle, Comput. Methods Appl. Mech. Engrg., 77, 31-59 (1989) · Zbl 0727.73044
[47] N.H. Kim, Y. Chang, Eulerian shape design optimization with fixed grid, in: 44th AIAA/ASME/ASCE/ASC Structure, Structural Dynamics, and Materials Conference, AIAA 2003-1634, 7-10 April 2003, Norfolk, VA.; N.H. Kim, Y. Chang, Eulerian shape design optimization with fixed grid, in: 44th AIAA/ASME/ASCE/ASC Structure, Structural Dynamics, and Materials Conference, AIAA 2003-1634, 7-10 April 2003, Norfolk, VA.
[48] C. Bischof, A. Carle, Automatic differentiation—principles, tools, and applications in sensitivity analysis, in: K. Chan, S. Tarantola, F. Campolongo (Eds.), Second International Symposium on Sensitivity Analysis of Model Output, 19-22 April 1998, Venice, Ca’Dolfin, pp. 33-36.; C. Bischof, A. Carle, Automatic differentiation—principles, tools, and applications in sensitivity analysis, in: K. Chan, S. Tarantola, F. Campolongo (Eds.), Second International Symposium on Sensitivity Analysis of Model Output, 19-22 April 1998, Venice, Ca’Dolfin, pp. 33-36.
[49] Pandey, P. C.; Bakshi, P., Analytical response sensitivity computation using hybrid finite elements, Comput. Struct., 71, 525-534 (1999) · Zbl 0958.74048
[50] D.W. Stillman, Design sensitivity analysis for structures using explicit time integration, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4906, 6-8 September 2000, Long Beach, CA.; D.W. Stillman, Design sensitivity analysis for structures using explicit time integration, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4906, 6-8 September 2000, Long Beach, CA.
[51] Moita, J. S.; Infanta Barbosa, J.; Mota Soares, C. M.; Mota Soares, C. A., Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells, Comput. Struct., 76, 407-420 (2000)
[52] R. Fortunier, F. Thevon, J.D. Beley, Parametric finite element analysis: a new design method to shorten time to market, in: Proceedings of the EUROMAT Conference, 1997, Maastricht, p. 1524.; R. Fortunier, F. Thevon, J.D. Beley, Parametric finite element analysis: a new design method to shorten time to market, in: Proceedings of the EUROMAT Conference, 1997, Maastricht, p. 1524.
[53] Poldneff, M. J.; Rai, I. S.; Arora, J. S., Implementation of design sensitivity analysis for nonlinear structures, AIAA J., 31, 11, 2137-2142 (1993) · Zbl 0794.73050
[54] Kibsgaard, S., Sensitivity analysis—the basis for optimization, Int. J. Numer. Methods Engrg., 34, 901-932 (1992)
[55] Bischof, C. H.; Bücker, H. M.; Lang, B.; Rasch, A.; Risch, J. W., Extending the functionality of the general-purpose finite element package sepran by automatic differentiation, Int. J. Numer. Methods Engrg., 58, 2225-2238 (2003) · Zbl 1032.76589
[56] L.L. Sherman, A.C. Taylor, L.L. Green, P.A. Newman, G.J.-W. Hou, V.M. Korivi, First- and second-order aerodynamic sensitivity derivatives via automatic differentiation with incremental iterative methods, in: 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 94-4262, 7-9 September 1994, Panama City Beach, FL.; L.L. Sherman, A.C. Taylor, L.L. Green, P.A. Newman, G.J.-W. Hou, V.M. Korivi, First- and second-order aerodynamic sensitivity derivatives via automatic differentiation with incremental iterative methods, in: 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 94-4262, 7-9 September 1994, Panama City Beach, FL. · Zbl 0933.76070
[57] Ozaki, I.; Kimura, F.; Berz, M., Higher-order sensitivity analysis of finite element method by automatic differentiation, Comput. Mech., 16, 223-234 (1995) · Zbl 0845.73071
[58] Wujek, B. A.; Renaud, J. E., Automatic differentiation for more efficient system analysis and optimization, Engrg. Optim., 31, 101-139 (1998)
[59] Bischof, C.; Carle, A.; Khademi, P.; Mauer, A., The ADIFOR 2.0 system for the automatic differentiation of Fortran 77 programs, IEEE Comput. Sci. Engrg., 3, 18-32 (1996)
[60] Griewank, A.; Juedes, D.; Utke, J., ADOL-C, a package for the automatic differentiation of algorithms written in C/C++, TOMS, 22, 2, 131-167 (1996) · Zbl 0884.65015
[61] Shiriaev, D.; Griewank, A., ADOL-F: Automatic differentiation of Fortran codes, Comput. Differentiat. Tech. Appl. Tools, 1, 375-384 (1996) · Zbl 0866.65019
[62] J.R.R.A. Martins, P. Sturdza, J.J. Alonso, The connection between the complex-step derivative approximation and algorithmic differentiation, AIAA 2001-0921, in: Proceedings of the 39th Aerospace Sciences Meeting, Reno, NV, January 2001.; J.R.R.A. Martins, P. Sturdza, J.J. Alonso, The connection between the complex-step derivative approximation and algorithmic differentiation, AIAA 2001-0921, in: Proceedings of the 39th Aerospace Sciences Meeting, Reno, NV, January 2001.
[63] Lyness, J. N.; Moler, C. B., Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4, 202-210 (1967) · Zbl 0155.48003
[64] Lyness, J. N., Numerical algorithms based on the theory of complex variables, (Proceedings of the ACM 22nd notational conference (1967), Thomas Book, Co.: Thomas Book, Co. Washington, DC), 124-134
[65] Squire, W.; Trapp, G., Using complex variable to estimate derivatives of real functions, SIAM Rev., 40, 1, 110-112 (1998) · Zbl 0913.65014
[66] J.C. Newman, D.L. Whitfield, W.K. Anderson, A step-size independent approach for multidisciplinary sensitivity analysis and design optimization, in: 17th AIAA Applied Aerodynamics Conference, 28 June-1 July 1999, pp. 12-22.; J.C. Newman, D.L. Whitfield, W.K. Anderson, A step-size independent approach for multidisciplinary sensitivity analysis and design optimization, in: 17th AIAA Applied Aerodynamics Conference, 28 June-1 July 1999, pp. 12-22.
[67] J.R.R.A. Martins, I.M. Kroo, J.J. Alonso, An automated method for sensitivity analysis using complex variables, in: AIAA 38th Aerospace Sciences Meeting and Exhibit, Reno NV, AIAA Paper 2000-0689, 2000.; J.R.R.A. Martins, I.M. Kroo, J.J. Alonso, An automated method for sensitivity analysis using complex variables, in: AIAA 38th Aerospace Sciences Meeting and Exhibit, Reno NV, AIAA Paper 2000-0689, 2000.
[68] Bugeda, G.; Onate, E., Optimum aerodynamic shape design including mesh adaptivity, Int. J. Numer. Methods Fluids, 20, 915-934 (1995) · Zbl 0837.76067
[69] Choi, K. K.; Twu, S.-L., Equivalence of continuum and discrete methods of shape design sensitivity analysis, AIAA J., 27, 10, 1418-1424 (1989)
[70] S.K. Nadarajah, A. Jameson, A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization, in: AIAA 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper No. 2000-0667, January 2000.; S.K. Nadarajah, A. Jameson, A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization, in: AIAA 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper No. 2000-0667, January 2000.
[71] Gunzburger, M. D., Sensitivities, adjoints and flow optimization, Int. J. Numer. Methods Fluids, 31, 53-58 (1999) · Zbl 0962.76030
[72] B. Barthelemy, R.T. Haftka, Accuracy analysis of the semi-analytical method for shape sensitivity, in: Proceedings of AIAA/ASME/ASCE/ASC 29th Structures, Structural Dynamics and Materials Conference, Williamsburg, VA, 18-20 April 1988, pp. 88-2284.; B. Barthelemy, R.T. Haftka, Accuracy analysis of the semi-analytical method for shape sensitivity, in: Proceedings of AIAA/ASME/ASCE/ASC 29th Structures, Structural Dynamics and Materials Conference, Williamsburg, VA, 18-20 April 1988, pp. 88-2284.
[73] Barthelemy, B.; Chon, C. T.; Haftka, R. T., Accuracy problems associated with semi-analytical derivatives of static response, Presented at the First World Congress on Computational Mechanics, Austin, TX, September 1986. Presented at the First World Congress on Computational Mechanics, Austin, TX, September 1986, Finite Element Anal. Des., 4, 249-265 (1988) · Zbl 0671.73070
[74] Mlejnek, H. P., Accuracy of semi-analytical sensitivities and its improvement by the natural method, Struct. Optim., 4, 128-131 (1992)
[75] Olhoff, N.; Rasmussen, J.; Lund, E., A method of “exact” numerical differentiation for error elimination in finite-element-based semi-analytical shape sensitivity analyses, Mech. Struct. Mach., 21, 1-66 (1993)
[76] van Keulen, F.; de Boer, H., Rigorous improvement of semi-analytical design sensitivities by exact differentiation of rigid body motions, Int. J. Numer. Methods Engrg., 42, 71-91 (1998) · Zbl 0916.73066
[77] de Boer, H.; vanKeulen, F., Refined semi-analytical design sensitivities, Int. J. Solid Struct., 37, 46-47, 6961-6980 (2000) · Zbl 0994.74053
[78] K. Vervenne, Design sensitivity analysis, Technical report, Delft University of Technology, LTM 1234, 2000.; K. Vervenne, Design sensitivity analysis, Technical report, Delft University of Technology, LTM 1234, 2000.
[79] Borggaard, J.; Verma, A., On efficient solutions to the continuous sensitivity equation using structured automatic differentiation, SIAM J. Sci. Comput., 22, 1, 39-62 (2000) · Zbl 0969.65059
[80] A. Sandu, G.R. Charmichael, F.A. Potra, Sensitivity analysis for atmospheric chemistry via automatic differentiation, Paper presented at SAMO 95, Belgirate, Italy, 25-27 September 1995.; A. Sandu, G.R. Charmichael, F.A. Potra, Sensitivity analysis for atmospheric chemistry via automatic differentiation, Paper presented at SAMO 95, Belgirate, Italy, 25-27 September 1995.
[81] P. Krishnaswami, Symbolic computing and automatic differentiation for sensitivity analysis, in: Optimization in Industry—1997, ASME, 1997, pp. 103-108.; P. Krishnaswami, Symbolic computing and automatic differentiation for sensitivity analysis, in: Optimization in Industry—1997, ASME, 1997, pp. 103-108.
[82] Burczynski, T.; Kane, J. H.; Balakrishna, C., Comparison of shape design sensitivity analysis formulations via material derivative-adjoint variable and implicit differentiation techniques for 3-d and 2-d curved boundary element, Comput. Methods Appl. Mech. Engrg., 142, 89-109 (1997) · Zbl 0893.73040
[83] Borggaard, J.; Burns, J., A pde sensitivity equation method for optimal aerodynamical design, J. Comput. Phys., 136, 366-384 (1997) · Zbl 0903.76064
[84] Dems, K.; Haftka, R. T., Two approaches to sensitivity analysis for shape variation of structures, Mech. Struct. Mach., 16, 501-522 (1989)
[85] Lindby, T.; Santos, J. L.T., 2-d and 3-d shape optimization using mesh velocities to integrate analytical sensitivities with associative cad, Struct. Optim., 13, 213-222 (1997)
[86] Erman, Z.; Fenner, R. T., Three-dimensional design sensitivity analysis using a boundary integral approach, Int. J. Numer. Methods Engrg., 40, 637-654 (1997) · Zbl 0888.73068
[87] A. Carle, M. Fagan, L.L. Green, Preliminary results from the application of automated adjoint code generation to CFL3D, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, volume Part 2, AIAA 98-4807, 2-4 September 1998, pp. 807-817.; A. Carle, M. Fagan, L.L. Green, Preliminary results from the application of automated adjoint code generation to CFL3D, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, volume Part 2, AIAA 98-4807, 2-4 September 1998, pp. 807-817.
[88] J.L. Walsh, K.C. Young, F.J. Tarzanin, J.E. Hirsh, D.E. Young, Optimization issues with complex rotorcraft comprehensive analysis, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, volume Part 2, AIAA 98-4889, 2-4 September 1998.; J.L. Walsh, K.C. Young, F.J. Tarzanin, J.E. Hirsh, D.E. Young, Optimization issues with complex rotorcraft comprehensive analysis, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, volume Part 2, AIAA 98-4889, 2-4 September 1998.
[89] H. Hu, sensitivity derivatives of a rotor CFD code via automatic differentiation, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, volume Part 1, AIAA 98-4724, pages 159-164, September 2-4 1998.; H. Hu, sensitivity derivatives of a rotor CFD code via automatic differentiation, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, volume Part 1, AIAA 98-4724, pages 159-164, September 2-4 1998.
[90] Akgün, M. A.; Haftka, R. T.; Wu, K. C.; Walsh, J. L., Sensitivity of lumped constraints using the adjoint method, AIAA J., 39, 3, 511-516 (2001)
[91] Barthelemy, B. M.; Haftka, R. T.; Cohen, G. A., Physically based sensitivity derivatives for structural analysis programs, Comput. Mech., 4, 6, 465-476 (1989) · Zbl 0692.73055
[92] Chang, K. H.; Choi, K. K.; Tsai, C. S.; Choi, B. S.; Yu, X. M., Design sensitivity analysis and optimization tool (DSO) for shape design applications, Comput. System Engrg., 6, 2, 151-175 (1995)
[93] Hughes, T. J.R., The finite element method (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[94] Haug, E. J.; Choi, K. K.; Komkov, V., Design sensitivity analysis of structural systems (1986), Academic Press: Academic Press New York · Zbl 0618.73106
[95] Greene, W. H.; Haftka, R. T., Computational aspects of sensitivity calculations in transient structural analysis, Comput. Struct., 32, 433-443 (1989)
[96] Kramer, M. A.; Calo, J. M.; Rabitz, H., An improved computational method for sensitivity analysis: Green’s function method with aim, Appl. Math. Model., 5, 432-441 (1981) · Zbl 0469.65049
[97] Haftka, R. T.; Gürdal, Z., Elements of structural optimization (1990), Kluwer Academic Publishers · Zbl 0702.73047
[98] Poldneff, M. J.; Arora, J. S., Design sensitivity analysis in dynamic thermoviscoelasticity with implicit integration, Int. J. Solid Struct., 33, 4, 577-594 (1996) · Zbl 0926.74087
[99] Cho, S.; Choi, K. K., Design sensitivity analysis and optimization of non-linear transient dynamics. Part I—Sizing design, Int. J. Numer. Methods Engrg., 48, 351-373 (2000) · Zbl 0991.74052
[100] Kim, N. H.; Choi, K. K., Design sensitivity analysis and optimization of nonlinear transient dynamics, Mech. Struct. Mach., 29, 3, 351-371 (2001)
[101] Haftka, R. T.; Malkus, D. S., Calculation of sensitivity derivatives in thermal problems by finite differences, Int. J. Numer. Methods Engrg., 17, 1811-1821 (1981) · Zbl 0471.76095
[102] Pollock, G. D.; Noor, A. K., Sensitivity analysis of the contact/impact response of composite structures, Comput. Struct., 61, 2, 251-269 (1996) · Zbl 0900.73677
[103] Haug, E. J.; Mani, N. K.; Krishnaswami, P., (Haug, E. J., Design sensitivity analysis and optimization of dynamically driven systems (1984), Springer: Springer Berlin), 555-636 · Zbl 0569.70030
[104] Karaogˇlan, L.; Noor, A. K., Dynamic sensitivity analysis of frictional contact/impact response of axisymmetric composite structures, Comput. Methods Appl. Mech. Engrg., 128, 169-190 (1995) · Zbl 0862.73054
[105] Haftka, R. T., Techniques for thermal sensitivity analysis, Int. J. Numer. Methods Engrg., 17, 71-80 (1981) · Zbl 0453.73108
[106] Michaleris, P.; Tortorelli, D. A.; Vidal, C. A., Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity, Int. J. Numer. Methods Engrg., 37, 2471-2499 (1994) · Zbl 0808.73057
[107] Chen, S.; Hansen, J. M.; Tortorelli, D. A., Unconditionally energy stable implicit time integration: application to multibody system analysis and design, Int. J. Numer. Methods Engrg., 48, 791-822 (2000) · Zbl 0971.70005
[108] Nguyen, T. V.; Devgan, A.; Nastov, O. J.; Winston, D. W., Transient sensitivity computation in controlled explicit piecewise linear simulation, IEEE Trans. Comp.-Aided Des. Integr. Circ. Syst., 19, 1, 98-110 (2000)
[109] Wu, C. C.; Arora, J. S., Design sensitivity analysis and optimization of nonlinear structural response using incremental procedure, AIAA J., 25, 1118-1125 (1987) · Zbl 0622.73109
[110] Wu, C. C.; Arora, J. S., Design sensitivity analysis of non-linear buckling load, Comput. Mech., 3, 129-140 (1988) · Zbl 0627.73054
[111] Lund, E.; Olhoff, N., Shape design sensitivity analysis of eigenvalues using “exact” numerical differentiation of finite element matrices, Struct. Optim., 8, 52-59 (1994)
[112] Spence, A. M.; Celi, R., Efficient sensitivity analysis for rotary-wing aeromechanical problems, AIAA J., 32, 12, 2337-2344 (1994) · Zbl 0824.73046
[113] Zhang, W. H.; Domaszewski, M., Efficient sensitivity analysis and optimization of shell structures by the ABAQUS code, Struct. Optim., 18, 173-182 (1999)
[114] Langelaan, J. W.; Livne, E., Analytic sensitivities and design oriented structural analysis for airplane fuselage shape synthesis, Comput. Struct., 62, 3, 505-519 (1997) · Zbl 0926.74090
[115] Cheng, G.; Gu, Y.; Zhou, Y., Accuracy of semi-analytic sensitivity analysis, Finite Element Anal. Des., 6, 113-128 (1989) · Zbl 0694.73038
[116] Pedersen, P.; Cheng, G.; Rasmussen, J., On accuracy problems for semi-analytical sensitivity analyses, Mech. Struct. Mach., 17, 373-384 (1989)
[117] Fenyes, P.; Lust, R. V., Error analysis of semianalytic displacement derivatives for shape and sizing variables, AIAA J., 29, 271-279 (1991)
[118] Olhoff, N.; Rasmussen, J., Study of inaccuracy in semi-analytical sensitivity analysis—a model problem, Struct. Optim., 3, 203-213 (1991)
[119] Cheng, G.; Olhoff, N., Rigid body motion test against error in semi-analytical sensitivity analysis, Comput. Struct., 46, 515-527 (1993) · Zbl 0769.73075
[120] van Keulen, F.; Vervenne, K.; de Boer, H., Accuracy improvement of semi-analytical design sensitivities—an overview of recent developments, (Querin, O. M., Proceedings of 3rd ASMO-UK/ISSMO conference Harrogate, North Yorkshire, 9-10 July 2001. Proceedings of 3rd ASMO-UK/ISSMO conference Harrogate, North Yorkshire, 9-10 July 2001, Engineering design optimization, product and process improvement (2001), University Press Leeds), 227-236
[121] Cheng, G.; Gu, Y.; Wang, X., Improvement of semi-analytical analysis and mcads, (Eschenhauer, H. A.; Mattheck, C.; Olhoff, N., Engineering optimization in design processes (1991), Springer: Springer Berlin, Heidelberg, New York), 211-223
[122] de Boer, H.; van Keulen, F., Error analysis of refined semi-analytical design sensitivities, Struct. Optim., 14, 242-247 (1997)
[123] J. Argyris, H.P. Mlejnek, Die Methode der Finiten Elemente, vol. I: Verschiebungsmethode in der Statik, Braunschweig, Vieweg, 1986 (in German).; J. Argyris, H.P. Mlejnek, Die Methode der Finiten Elemente, vol. I: Verschiebungsmethode in der Statik, Braunschweig, Vieweg, 1986 (in German). · Zbl 0706.73070
[124] Hinton, E.; Sienz, J.; Afonso, S. M.B., Experiences with Olhoff’s “exact” semi-analytical sensitivity algorithm, (Olhoff, N.; Rozvany, G. I.N., WCSMO-1, First world congress of structural and multidisciplinary optimization (1995), Pergamon), 41-46
[125] F. van Keulen, H. de Boer, Refined semi-analytical design sensitivities for buckling, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, volume Part 1, AIAA 98-4761, 2-4 September 1998, pp 420-429.; F. van Keulen, H. de Boer, Refined semi-analytical design sensitivities for buckling, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, volume Part 1, AIAA 98-4761, 2-4 September 1998, pp 420-429.
[126] H. de Boer, F. van Keulen, Refined second order semi-analytical design sensitivities, in: Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization, 17-21 May 1999, Buffalo, New York, CD-ROM (Paper 12-SAM-4).; H. de Boer, F. van Keulen, Refined second order semi-analytical design sensitivities, in: Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization, 17-21 May 1999, Buffalo, New York, CD-ROM (Paper 12-SAM-4). · Zbl 1033.74037
[127] Parente, E.; Vaz, L. E., Improvement of semi-analytical design sensitivities of nonlinear structures using equilibrium relations, Int. J. Numer. Methods Engrg., 50, 9, 2127-2142 (2001) · Zbl 0977.74048
[128] Bernard, J. E.; Kwon, S. K.; Wilson, J. A., Differentiation of mass and stiffness matrices for high order sensitivity calculations in finite element-based equilibrium problems, Trans. ASME, 115, 829-832 (1993)
[129] Bakshi, P.; Pandey, P. C., Semi-analytic sensitivities using hybrid finite elements, Comput. Struct., 77, 201-213 (2000)
[130] K. Vervenne, F. van Keulen, Accuracy improvement of semi-analytical design sensitivities by Laplacian smoothing, in: 42nd Structures, Structural Dynamics and Materials Conference and Exhibit, AIAA 2001-1497, A01-25415, Seattle, WA, 16-19 April 2001, AIAA.; K. Vervenne, F. van Keulen, Accuracy improvement of semi-analytical design sensitivities by Laplacian smoothing, in: 42nd Structures, Structural Dynamics and Materials Conference and Exhibit, AIAA 2001-1497, A01-25415, Seattle, WA, 16-19 April 2001, AIAA.
[131] Zhang, W.-H.; Beckers, P.; Fleury, C., A unified parametric design approach to structural shape optimization, Int. J. Numer. Methods Engrg., 38, 2283-2292 (1995) · Zbl 0854.73040
[132] Tseng, C. H.; Arora, J. S., Numerical verification of design sensitivity analysis, AIAA J., 27, 1, 117-119 (1989)
[133] Tai, K.; Fenner, R. T., Numerical study of some approaches to shape design sensitivity analysis using boundary elements, J. Strain Anal., 31, 5, 361-369 (1996)
[134] J. Borggaard, J. Burns, Asymptotically consistent gradients in optimal design, in: Multidisciplinary Design Optimization, State of the Art, Proceedings of the ICASE/NASA Langley Workshop on Multidisciplinary Design Optimization, Hampton, Virginia, 13-16 March 1995, pp. 303-314.; J. Borggaard, J. Burns, Asymptotically consistent gradients in optimal design, in: Multidisciplinary Design Optimization, State of the Art, Proceedings of the ICASE/NASA Langley Workshop on Multidisciplinary Design Optimization, Hampton, Virginia, 13-16 March 1995, pp. 303-314.
[135] Kane, J. H.; Prasad, K. G., Boundary formulations for sensitivity analysis without matrix derivatives, AIAA J., 31, 9, 1731-1734 (1993)
[136] Godoy, L. A.; Taroco, E. O., Design sensitivity of post-buckling states including material constraints, Comput. Methods Appl. Mech. Engrg., 188, 665-679 (2000) · Zbl 0983.74023
[137] H. de Boer, F. van Keulen, Improved semi-analytic design sensitivities for a linear and finite rotation shell element, in: W. Gutkowski, Z. Mróz (Eds.), WCSMO-2, Second World Congress of Structural and Multidisciplinary Optimization, 1997, pp. 199-204.; H. de Boer, F. van Keulen, Improved semi-analytic design sensitivities for a linear and finite rotation shell element, in: W. Gutkowski, Z. Mróz (Eds.), WCSMO-2, Second World Congress of Structural and Multidisciplinary Optimization, 1997, pp. 199-204.
[138] Smith, D. E.; Tortorelli, D. A.; Tucker, C. L., Optimal design for polymer extrusion. Part II: Sensitivity analysis for weakly-coupled nonlinear steady-state systems, Comput. Methods Appl. Mech. Engrg., 167, 303-323 (1998) · Zbl 0932.82038
[139] Joun, M. S.; Hwang, S. M., Die shape optimal design in three-dimensional shape metal extrusion by the finite element method, Int. J. Numer. Methods Engrg., 41, 311-335 (1998) · Zbl 0899.73541
[140] H. Møller, E. Lund, Shape sensitivity analysis of strongly coupled fluid-structure interaction problems, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4823, 6-8 September 2000, Long Beach, CA.; H. Møller, E. Lund, Shape sensitivity analysis of strongly coupled fluid-structure interaction problems, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4823, 6-8 September 2000, Long Beach, CA.
[141] L.A. Jakobsen, H. Møller, E. Lund, Sensitivity analysis of convection dominated steady 2d fluid flow using supg fem, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4822, 6-8 September 2000, Long Beach, CA.; L.A. Jakobsen, H. Møller, E. Lund, Sensitivity analysis of convection dominated steady 2d fluid flow using supg fem, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4822, 6-8 September 2000, Long Beach, CA.
[142] G. Cheng, N. Olhoff, New method of error analysis and detection in semi-analytic sensitivity analysis, in: G.I.N. Rozvany (Ed.), Lecture Notes, NATO/DFG/ASI Optimization of Large Structural Systems, vol. 1, 23 September-4 October 1991, pp. 234-267.; G. Cheng, N. Olhoff, New method of error analysis and detection in semi-analytic sensitivity analysis, in: G.I.N. Rozvany (Ed.), Lecture Notes, NATO/DFG/ASI Optimization of Large Structural Systems, vol. 1, 23 September-4 October 1991, pp. 234-267.
[143] Ozaki, I.; Terano, T., Applying an automatic differentiation technique to sensitivity analysis in design optimization problems, Finite Element Anal. Des., 14, 143-151 (1993)
[144] C. Faure, C. Ducal, Automatic differentiation for sensitivity analysis, a test case, in: K. Chan, S. Tarantola, F. Campolongo (Eds.), Second International Symposium on Sensitivity Analysis of Model Output, Venice, Ca’Dolfin, 19-22 April 1998, pp. 107-110.; C. Faure, C. Ducal, Automatic differentiation for sensitivity analysis, a test case, in: K. Chan, S. Tarantola, F. Campolongo (Eds.), Second International Symposium on Sensitivity Analysis of Model Output, Venice, Ca’Dolfin, 19-22 April 1998, pp. 107-110.
[145] Hu, H., Application of an automatic differentiation method to a 2d Navier-Stokes CFD code, Comput. Methods Appl. Mech. Engrg., 156, 179-183 (1998) · Zbl 0961.76077
[146] A.C. Limache, E.M. Cliff, Aerodynamic sensitivity theory for rotary stability derivatives, in: AIAA Atmospheric Flight Mechanics Conference, Portland, OR, 9-11 August 1999, AIAA 99-4313.; A.C. Limache, E.M. Cliff, Aerodynamic sensitivity theory for rotary stability derivatives, in: AIAA Atmospheric Flight Mechanics Conference, Portland, OR, 9-11 August 1999, AIAA 99-4313.
[147] Rall, L. B.; Corliss, G. F., An introduction to automatic differentiation, Comput. Differentiat.: Tech. Appl. Tools, 1-18 (1996) · Zbl 0940.65019
[148] Chen, C.-J.; Choi, K. K., Continuum approach for second-order shape design sensitivity of three-dimensional elastic solids, AIAA J., 32, 10, 2099-2107 (1994) · Zbl 0831.73037
[149] Barthold, F.-J.; Stein, E., A continuum mechanical-based formulation of the variational sensitivity analysis in structural optimization. Part I: Analysis, Struct. Optim., 11, 29-42 (1996)
[150] Hwang, H.-Y.; Choi, K. K.; Chang, K.-H., Second-order shape design sensitivity using p-version finite element analysis, Struct. Optim., 14, 91-99 (1997)
[151] Kolakowski, P.; Holnicki-Szulc, J., Sensitivity analysis of truss structures (virtual distortion method approach), Int. J. Numer. Methods Engrg., 43, 1085-1108 (1998) · Zbl 0934.74059
[152] Kim, H. W.; Bae, D. S.; Choi, K. K., Configuration design sensitivity analysis of kinematic responses of mechanical systems, Mech. Struct. Mach., 27, 2, 203-215 (1999)
[153] É. Turgeon, D. Pelletier, J. Borggaard, A general continuous sensitivity equation formulation for complex flows, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4732, 6-8 September 2000, Long Beach, CA.; É. Turgeon, D. Pelletier, J. Borggaard, A general continuous sensitivity equation formulation for complex flows, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4732, 6-8 September 2000, Long Beach, CA. · Zbl 1063.76574
[154] É. Turgeon, D. Pelletier, J. Borggaard, B. Ozell, A continuous sensitivity equation method for flows with temperature dependent properties, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4821, 6-8 September 2000, Long Beach, CA.; É. Turgeon, D. Pelletier, J. Borggaard, B. Ozell, A continuous sensitivity equation method for flows with temperature dependent properties, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4821, 6-8 September 2000, Long Beach, CA. · Zbl 1063.76574
[155] Rohan, E.; Whiteman, J. R., Shape optimization of elasto-plastic structures and continua, Comput. Methods Appl. Mech. Engrg., 187, 261-288 (2000) · Zbl 0972.74055
[156] Souli, M.; Zolesio, J. P.; Ouahsine, A., Shape optimization for non-smooth geometry in two dimensions, Comput. Methods Appl. Mech. Engrg., 188, 109-119 (2000) · Zbl 0978.74059
[157] Brandon, J. A., Second-order design sensitivities to assess the applicability of sensitivity analysis, AIAA J., 29, 1, 135-139 (1991)
[158] Friswell, M. I., Calculation of second and higher order eigenvector derivatives, J. Guidance, 18, 4, 919-921 (1995) · Zbl 0847.73029
[159] Godoy, L. A.; Taroco, E. O.; Feijoo, R. A., Second-order sensitivity analysis in vibration and buckling problems, Int. J. Numer. Methods Engrg., 37, 3999-4014 (1994) · Zbl 0814.73078
[160] J. Borggaard, D. Pelletier, On adaptive shape sensitivity calculations for optimal design, Comput. Methods Appl. Mech. Engrg., submitted for publication.; J. Borggaard, D. Pelletier, On adaptive shape sensitivity calculations for optimal design, Comput. Methods Appl. Mech. Engrg., submitted for publication. · Zbl 1041.49504
[161] Borggaard, J.; Pelletier, D., Observations in adaptive refinement strategies for optimal design, (Borggaard, J.; Burns, J.; Cliff, E.; Schreck, S., Computational methods for optimal design and control (1998), Birkhauser), 59-76 · Zbl 1041.49504
[162] J. Borggaard, D. Pelletier, Optimal shape design in forced convection using adaptive finite elements, AIAA 98-0908, in: AIAA 36th Aerospace Sciences Meeting and Exhibit, Reno NV, 1998.; J. Borggaard, D. Pelletier, Optimal shape design in forced convection using adaptive finite elements, AIAA 98-0908, in: AIAA 36th Aerospace Sciences Meeting and Exhibit, Reno NV, 1998. · Zbl 1041.49504
[163] Kim, N. H.; Choi, K. K.; Chen, J. S.; Park, Y. H., Meshless shape design sensitivity analysis and optimization for contact problem with friction, Comput. Mech., 25, 2-3, 157-168 (2000) · Zbl 0982.74053
[164] Kim, N. H.; Choi, K. K.; Chen, J. S., Shape design sensitivity analysis and optimization of elasto-plasticity with frictional contact, AIAA J., 38, 9, 1742-1753 (2000)
[165] Kim, N. H.; Yi, K.; Choi, K. K., A material derivative approach in design sensitivity analysis of 3-d contact problems, Int. J. Solid Struct., 39, 8, 2087-2108 (2002) · Zbl 1037.74036
[166] Kim, N. H.; Park, Y. H.; Choi, K. K., Optimization of a hyperelastic structure with multibody contact using continuum-based shape design sensitivity analysis, Struct. Optim., 21, 3, 196-208 (2001)
[167] Kim, N. H.; Choi, K. K.; Chen, J. S., Die shape design optimization of sheet metal stamping process using meshfree method, Int. J. Numer. Methods Engrg., 51, 12, 1385-1405 (2001) · Zbl 1065.74584
[168] Ting, T., Design sensitivity analysis of structural frequency response, AIAA J., 31, 10, 1965-1967 (1992) · Zbl 0784.73060
[169] Zhang, Y.; Nguyen, D. T.; Hou, J. W., An alternative formulation for design sensitivity analysis of linear structural dynamic systems, Comput. Struct., 44, 3, 689-692 (1992) · Zbl 0771.73059
[170] Nalecz, A. G.; Wicher, J., Design sensitivity analysis of mechanical systems in frequency domain, J. Sound Vib., 120, 3, 517-526 (1988)
[171] Lin, R. M.; Lim, M. K., Structural sensitivity analysis via reduced-order analytical model, Comput. Methods Appl. Mech. Engrg., 121, 345-359 (1995) · Zbl 0852.73038
[172] Lin, R. M.; Du, H.; Ong, J. H., Sensitivity based method for structural dynamic model improvement, Comput. Struct., 47, 3, 349-369 (1993)
[173] Andrew, A. L.; Tan, R. C.E., Computation of derivatives of repeated eigenvalues and corresponding eigenvectors by simultaneous iteration, AIAA J., 34, 10, 2214-2216 (1996) · Zbl 0899.65015
[174] Andrew, A. L.; Tan, R. C.E., Computation of mixed partial derivatives of eigenvalues and eigenvectors by simultaneous iteration, Commun. Numer. Methods Engrg., 15, 641-649 (1999) · Zbl 0944.65040
[175] Cardani, C.; Mantegazza, P., Calculation of eigenvalue and eigenvector derivatives for algebraic flutter and divergence eigenproblems, AIAA J., 17, 4, 408-412 (1979) · Zbl 0396.73038
[176] Chen, T., Design sensitivity analysis for repeated eigenvalues in structural design, AIAA J., 31, 12, 2347-2350 (1993) · Zbl 0794.73046
[177] Choi, K. K.; Haug, E. J.; Seong, H. G., An iterative method for finite dimensional structural optimization problems with repeated eigenvalues, Int. J. Numer. Methods Engrg., 19, 93-112 (1983) · Zbl 0497.73098
[178] Dailey, R. L., Eigenvector derivatives with repeated eigenvalues, AIAA J., 27, 4, 486-491 (1989)
[179] Haug, E. J.; Choi, K. K., Systematic occurrence of repeated eigenvalues in structural optimization, J. Optim. Theory Appl., 38, 2, 251-274 (1982) · Zbl 0471.49022
[180] Lin, R. M.; Wang, Z.; Lim, M. K., A practical algorithm for the efficient computation of eigenvector sensitivities, Comput. Methods Appl. Mech. Engrg., 130, 355-367 (1996) · Zbl 0862.73067
[181] Fox, R. L.; Kapoor, M. P., Rates of change of eigenvalues and eigenvectors, AIAA J., 6, 12, 2426-2429 (1968) · Zbl 0181.53003
[182] Jankovic, M. S., Exact \(n\) th derivatives of eigenvalues and eigenvectors, J. Guid. Control Dynam., 17, 1, 136-144 (1994) · Zbl 0791.93051
[183] Kim, K.; Wallerstein, D. V., Modal design sensitivities for multiple eigenvalues, Comput. Struct., 29, 5, 755-762 (1988) · Zbl 0666.73062
[184] Mateus, H. C.; Rodrigues, H. C.; Mota Soares, C. M.; Mota Soares, C. A., Sensitivity analysis and optimization of thin laminated structures with a nonsmooth eigenvalue based criterion, Struct. Optim., 14, 219-224 (1997) · Zbl 0919.73102
[185] Mills-Curran, W. C., Calculation of eigenvector derivatives for structures with repeated eigenvalues, AIAA J., 26, 7, 867-871 (1988) · Zbl 0665.73069
[186] Mills-Curran, W. C., Comment on “eigenvector derivatives with repeated eigenvalues”, AIAA J., 28, 10, 1846 (1990)
[187] N. Olhoff, E. Lund, A.P. Seyranian, Sensitivity analysis and optimization of multiple eigenvalues in structural design problems, in: Proceedings of the AIAA/NASA/USAF/ISMO Symposium on Multidisciplinary Analysis and Optimization, Part 1, 1994, AIAA, pp. 625-640.; N. Olhoff, E. Lund, A.P. Seyranian, Sensitivity analysis and optimization of multiple eigenvalues in structural design problems, in: Proceedings of the AIAA/NASA/USAF/ISMO Symposium on Multidisciplinary Analysis and Optimization, Part 1, 1994, AIAA, pp. 625-640.
[188] Poterasu, V. F., Approximate method to compute the eigenvalues and eigensensitivities of mechanical systems, Comput. Methods Appl. Mech. Engrg., 109, 183-192 (1993) · Zbl 0847.70016
[189] Robinson, A. R.; Harris, J. F., Improving approximate eigenvalues and eigenvectors, Proceedings of the American Society of Civil Engineers, EM. Proceedings of the American Society of Civil Engineers, EM, J. Engrg. Mech. Div., EM 2, 457-475 (1971)
[190] Rogers, L. C., Derivatives of eigenvalues and eigenvectors, AIAA J., 8, 5, 943-944 (1970)
[191] Rudisill, C. S.; Chu, Y. Y., Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors, AIAA J., 13, 6, 834-836 (1975)
[192] Seyranian, A. P.; Lund, E.; Olhoff, N., Multiple eigenvalues in structural optimization problems, Struct. Optim., 8, 207-227 (1994)
[193] Tan, R. C.E.; Andrew, A. L.; Hong, F. M.L., Iterative computation of second-order derivatives of eigenvalues and eigenvectors, Commun. Numer. Methods Engrg., 10, 1-9 (1994) · Zbl 0795.65020
[194] Wittrick, W. H., Rates of change of eigenvalues with reference to buckling and vibration problems, J. R Aeronautic. Soc., 66, 590-591 (1966)
[195] Nelson, R. B., Simplified calculation of eigenvector derivatives, AIAA J., 14, 9, 1201-1205 (1976) · Zbl 0342.65021
[196] Ojalvo, I. U., Efficient computation of modal sensitivities for systems with repeated frequencies, AIAA J., 26, 3, 361-366 (1988) · Zbl 0682.73043
[197] Beliveau, J.-G.; Cogan, S.; Lallement, G.; Ayer, F., Iterative least-squares calculation for modal eigenvector sensitivity, AIAA J., 34, 2, 385-391 (1996) · Zbl 0904.73039
[198] Lallemand, B.; Level, P.; Duveau, H.; Mahieux, B., Eigensolutions sensitivity analysis using a sub-structuring method, Comput. Struct., 71, 257-265 (1999)
[199] Ting, T., Accelerated subspace iteration for eigenvector derivatives, AIAA J., 30, 8, 2114-2118 (1992) · Zbl 0758.65037
[200] Zhang, O.; Zerva, A., Accelerated iterative procedure for calculation eigenvector derivatives, AIAA J., 35, 2, 340-348 (1997) · Zbl 0888.73080
[201] Zarghamee, M. S., Optimum frequency of structures, AIAA J., 6, 4, 749-750 (1968)
[202] Grindeanu, I.; Kim, N. H.; Choi, K. K.; Chen, J. S., Cad-based shape optimization using a meshfree method, Concurrent Engrg.: Res. Appl., 10, 1, 55-66 (2002)
[203] Park, Y. H.; Choi, K. K., Configuration design sensitivity analysis of nonlinear structural systems with elastic material, Mech. Struct. Mach., 24, 2, 217-255 (1996)
[204] Park, J. S.; Choi, K. K., Design sensitivity analysis of critical load factor for nonlinear structural systems, Comput. Struct., 36, 5, 823-838 (1990) · Zbl 0715.73047
[205] Choi, K. K.; Park, J. S., Optimal design of nonlinear structural systems with critical loads, SAE Trans., 99, Sect6, 1141-1153 (1990)
[206] Eriksson, A., Fold lines for sensitivity analyses in structural instability, Comput. Methods Appl. Mech. Engrg., 114, 77-101 (1994)
[207] Kwon, T. S.; Lee, B. C.; Lee, W. J., An approximation technique for design sensitivity analysis of the critical load in non-linear structures, Int. J. Numer. Methods Engrg., 45, 1727-1736 (1999) · Zbl 0979.74059
[208] Olhoff, N.; Rasmussen, S. H., On single and bimodal optimum buckling loads of clamped columns, Int. J. Solid Struct., 13, 605-614 (1977) · Zbl 0357.73041
[209] Kim, N. H.; Choi, K. K.; Chen, J. S., Shape optimization of finite deformation elastoplasticity using continuum-based design sensitivity formulation, Comput. Struct., 79, 20-21, 1959-1976 (2001)
[210] Bobaru, F.; Mukherjee, S., Shape sensitivity analysis and shape optimization in planar elasticity using the element-free galerkin method, Comput. Methods Appl. Mech. Engrg., 190, 32-33, 4319-4337 (2001) · Zbl 1048.74051
[211] Choi, K. K.; Kim, N. H., Design optimization of springback in a deepdrawing process, AIAA J., 40, 1, 147-153 (2002)
[212] Kim, N. H.; Choi, K. K.; Chen, J. S.; Botkin, M. E., Meshfree analysis and design sensitivity analysis for shell structures, Int. J. Numer. Methods Engrg., 53, 9, 2087-2116 (2002) · Zbl 1051.74054
[213] Kim, N. H.; Choi, K. K.; Botkin, M. E., Numerical method for shape optimization using meshfree method, Struct. Optim., 24, 6, 418-429 (2003)
[214] Bugeda, G.; Gil, L.; Onate, E., Structural shape sensitivity analysis for nonlinear material models with strain softening, Struct. Optim., 17, 162-171 (1999)
[215] Vidal, C. A.; Haber, R. B., Design sensitivities for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Engrg., 107, 393-431 (1993) · Zbl 0798.73076
[216] K.K. Choi, S. Cho, Design sensitivity analysis for structures using explicit time integration, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2-4 September 1998, St Louis, MO.; K.K. Choi, S. Cho, Design sensitivity analysis for structures using explicit time integration, in: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2-4 September 1998, St Louis, MO.
[217] Kleiber, M.; Hien, T. D., Parameter sensitivity of inelastic buckling and post-buckling response, Comput. Methods Appl. Mech. Engrg., 145, 239-262 (1997) · Zbl 0890.73026
[218] Noguchi, H.; Hisada, T., Sensitivity analysis in post-buckling problems of shell structures, Comput. Struct., 47, 4/5, 699-710 (1993) · Zbl 0782.73070
[219] Hou, J. W.; Mei, C.; Xue, Y. X., Design sensitivity analysis of beams under nonlinear forced vibrations, AIAA J., 28, 6, 1067-1068 (1990)
[220] M.M. Godse, E.J. Haug, K.K. Choi, A parametric design methodology for concurrent engineering, Technical report, Center for Computer-Aided Design, The University of Iowa, Iowa City, IA, USA, 1991.; M.M. Godse, E.J. Haug, K.K. Choi, A parametric design methodology for concurrent engineering, Technical report, Center for Computer-Aided Design, The University of Iowa, Iowa City, IA, USA, 1991.
[221] R.J. Yang, M.J. Fiedler, Design modeling for large-scale three-dimensional shape optimization problems, in: Proceedings of the 1987 ASME International Computers in Engineering Conference and Exhibition, New York, USA, 1987, pp. 177-182.; R.J. Yang, M.J. Fiedler, Design modeling for large-scale three-dimensional shape optimization problems, in: Proceedings of the 1987 ASME International Computers in Engineering Conference and Exhibition, New York, USA, 1987, pp. 177-182.
[222] Kodiyalam, S.; Kumar, V.; Finnigan, P. M., A constructive solid geometry approach to three-dimensional shape optimization, AIAA J., 30, 5, 1408-1415 (1992)
[223] Botkin, M. E., Shape optimization of plate and shell structures, AIAA J., 20, 2, 268-273 (1982)
[224] C. Faure, C. Ducal, Shape optimal design—a performing cad oriented formulation, in: 25th AIAA SDM Conference, 1984, Palm Springs, CA, USA.; C. Faure, C. Ducal, Shape optimal design—a performing cad oriented formulation, in: 25th AIAA SDM Conference, 1984, Palm Springs, CA, USA.
[225] Yang, R. J.; Botkin, M. E., A modular approach for three-dimensional shape optimization, AIAA J., 25, 3, 492-497 (1987)
[226] Imam, M. H., Three-dimensional shape optimization, Int. J. Numer. Methods Engrg., 18, 661-673 (1982) · Zbl 0482.73071
[227] Choi, K. K., Shape design sensitivity analysis and optimal design of structural systems, (Soares, C. A.M., Computed aided optimal design (1987), Springer-Verlag: Springer-Verlag Heidelberg), 439-492
[228] K.K. Choi, T.M. Yao, 3-d shape modeling and automatic regridding in shape design sensitivity analysis, in: Sensitivity Analysis in Engineering, NASA Conference Publication 2457, 1987, pp. 329-345.; K.K. Choi, T.M. Yao, 3-d shape modeling and automatic regridding in shape design sensitivity analysis, in: Sensitivity Analysis in Engineering, NASA Conference Publication 2457, 1987, pp. 329-345.
[229] Yao, T. M.; Choi, K. K., 3-d shape optimal design and automatic finite element regridding, Int. J. Numer. Methods Engrg., 28, 369-384 (1989) · Zbl 0669.73068
[230] Seoung, H.-G.; Choi, K. K., Boundary-layer approach to shape design sensitivity analysis, Mech. Struct. Mach., 15, 2, 241-263 (1987)
[231] Robinson, J. C.; Campbell, J. S.; Kelliher, D., Interior point tracking in shape evolving unstructured finite element meshes, Engrg. Comput., 15, 6, 721-731 (1998) · Zbl 0943.74069
[232] Rajan, S. D.; Belegundu, A. D., Shape optimal-design using fictitious loads, AIAA J., 27, 1, 102-107 (1989)
[233] Belegundu, A. D.; Rajan, S. D., A shape optimization approach based on natural design variables and shape functions, Comput. Methods Appl. Mech. Engrg., 66, 89-106 (1988) · Zbl 0616.73080
[234] Chiandussi, G.; Bugeda, G.; Onate, G., Shape variable definition with \(C^0, C^1\) and \(C^2\) continuity functions, Comput. Methods Appl. Mech. Engrg., 188, 727-742 (2000) · Zbl 0980.76013
[235] Chang, K. H.; Choi, K. K., A geometry-based parameterization method for shape design of elastic solids, Mech. Struct. Mach., 20, 2, 215-252 (1992)
[236] Choi, K. K.; Chang, K.-H., A study of design velocity field computation for shape optimal design, Finite Element Anal. Des., 15, 317-341 (1994) · Zbl 0801.73067
[237] Beckers, P., Recent developments in shape sensitivity analysis: the physical approach, Engrg. Optim., 18, 67-78 (1991)
[238] Haftka, R. T.; Grandhi, R. V., Structural shape optimization—a survey, Comput. Methods Appl. Mech. Engrg., 57, 91-106 (1986) · Zbl 0578.73080
[239] Ding, Y., Shape optimization of structures—a literature survey, Comput. Struct., 24, 6, 985-1004 (1986) · Zbl 0603.73091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.