×

Dispersive estimates for time and space fractional Schrödinger equations. (English) Zbl 1475.35398

Summary: In this paper, we consider the Cauchy problem for the fractional Schrödinger equation \(iD^\alpha_t u - (- (\Delta)^\frac{\beta}{2} u = 0 \) with \(0 < \alpha < 1\), \(\beta > 0\). We establish the dispersive estimates by a carefully study of the Mittag-Leffler functions and give some applications as well. In particular, we prove that the decay rates are sharp.

MSC:

35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations

References:

[1] MainardiF. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Singapore: World Scientific; 2010. · Zbl 1210.26004
[2] PodlubnyI. Fractional Differential Equations, Mathematics in Science and Engineering. New York: Academic Press; 1999. · Zbl 0924.34008
[3] SamkoSG, KilbasAA, MarichevOI. Fractional Integrals and Derivatives: Theory and Applications. Yverdon, Switzerland:Gordon and Breach Science; 1993. · Zbl 0818.26003
[4] MeerschaertMM, SikorskiiA. Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, vol. 43. Berlin/ Boston: Walter de Gruyter; 2012. · Zbl 1247.60003
[5] LaskinN. Fractional quantum mechanics and Lévy path integrals. Phys Lett A. 2000;268:298‐305. · Zbl 0948.81595
[6] LaskinN. Fractional Schrödinger equation. Phys Rev E. 2002;66:56‐108.
[7] LaskinN. Time fractional quantum mechanics. Chaos solitons Fractals. 2017;102:16‐28. · Zbl 1374.81059
[8] LaskinN. Fractional Quantum Mechanics. Singapore: World Scientific; 2018.
[9] BourgainJ. Global Solutions of Nonlinear Schrödinger Equations, American Mathematical Society Providence, vol. 46. RI: American Mathematical Society Colloquium Publications; 1999. · Zbl 0933.35178
[10] CazenaveT. Semilinear Schrödinger Equations, American Mathematical Society, vol. 10. Providence, RI: Courant Lect Notes Math; 2003. · Zbl 1055.35003
[11] TaoT. Nonlinear Dispersive Equations: Local and Global Analysis, Regional Conference Series in Mathematics. Providence, RI: American Mathematical Society; 2006. · Zbl 1106.35001
[12] LaskinN. Fractional quantum mechanics. Phys Rev E. 2000;62:3135‐3145.
[13] Narahari AcharBN, YaleBT, HannekenJW. Time fractional Schrödinger equation revisited. Adv Math Phys. 2013;2013:1‐11. · Zbl 1292.81031
[14] NaberM. Time fractional Schrödinger equation. J Math Phys. 2004;45:3339‐3352. · Zbl 1071.81035
[15] BayinSS. Time fractional Schrödinger equation: Fox’s H‐functions and the effective potential. J Math Phys. 2013;54:31‐35. · Zbl 1280.81034
[16] WangS, XuM. Generalised fractional Schrödinger equation with space‐time derivatives. J Math Phys. 2007;48:043502. · Zbl 1137.81328
[17] DongJ, XuM. Space‐time fractional Schrödinger equation with time dependent potentials. J Math Anal Appl. 2008;344:1005‐1017. · Zbl 1140.81357
[18] Duong DinhV. On the blowup solutions to the focusing L^2‐supercritical nonlinear fractional Schrödinger equations. arXiv:1802.0289; 2018.
[19] HongY, SireY. On fractional Schrödinger equations in Sobolev spaces. Commun Pur App Anal. 2015;14:2265‐2282. · Zbl 1338.35466
[20] IonescuA, PusateriF. Nonlinear fractional Schrödinger equations in one dimension. J Funct Anal. 2014;266:139‐176. · Zbl 1304.35749
[21] SandevT, PetreskaI, LenziEK. Effective potential from the generalized time‐dependent Schrödinger equation. Mathematics. 2016;4:59‐68. · Zbl 1369.35077
[22] ChoY, OzawaH, XiaS. Remarks on some dispersive estimates. Commun Pur App Anal. 2011;10:1121‐1128. · Zbl 1232.35136
[23] GorenfloR, KilbasAA, MainardiF, RogosinSV. Mittag‐Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Verlag Berlin Heidelberg: Springer; 2014. · Zbl 1309.33001
[24] GerholdS. Asymptotics for a variant of the Mittag‐Leffler function. Integral Transforms Spec Funct. 2012;23:397‐403. · Zbl 1257.33050
[25] WangJ, ZhouY, O’ReganD. A note on asymptotic behaviour of Mittag‐Leffler functions. Integral Transforms Spec Funct. 2018;29:81‐94. · Zbl 1384.33036
[26] GrafakosL. Classical Fourier Analysis, Graduate Texts in Mathematics. New York: Springer; 2008. · Zbl 1220.42001
[27] BerghJ, LöfströmJ. Interpolation Spaces. Berlin: Springer; 1976. · Zbl 0344.46071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.