×

A non-probabilistic methodology for reliable sustainability planning: an application to the Iraqi national irrigation system. (English) Zbl 1443.90083

Summary: This study describes the use of quadratically constrained linear programming with box and complementarity constraints, combined with a relative 1-norm distance measure, to determine the extent to which the relative weights \((w)\) attached to three sustainability criteria (economic, social, and environmental features) could affect the choice of projects to be implemented. To do so, this paper analyzes alternative proportions of the total projects \((m)\) that should be implemented (e.g., 50% and 25% of the total number of projects) as well as alternative standards \((c)\) to be achieved, on average, for some indices (e.g., 100% and 150% of the average standard values, which represent the mean value of these indices for all projects). The overall analytical results are presented for both linearly and exponentially weighted constraints, using partial derivatives to perform local sensitivity analyses (i.e., for each selected or rejected project), and the results account for the effects of \(w\), \(c\), and \(m\). Next, level curves are prepared over the whole domain for \(w\) to produce two-dimensional graphs that support a global sensitivity analysis (i.e., for all selected and rejected projects) and to account for the effects of \(w\), \(c\), and \(m\) for both linearly and exponentially weighted constraints. Application of this approach to the Iraqi national irrigation system as a case study showed that the results are less robust if a smaller proportion (25%) of the total projects is chosen, with a change of up to 30% in the projects selected. In this context, an increase in the smallest weights for sustainability criteria also affected project choices. If the average standard to be achieved is made stricter (150% of the average standard), the results become more robust, with a change of less than 5% in the selected projects. In this context, increases in the smallest weights for sustainability criteria did not affect the project choices. The results were less robust with linearly weighted constraints than with exponentially weighted constraints.

MSC:

90-10 Mathematical modeling or simulation for problems pertaining to operations research and mathematical programming

Software:

PROMETHEE-MD
Full Text: DOI

References:

[1] Baskaran, A.; Ambujam, N. K.; Bhaarathi, R., Valuing of irrigation water for different crops: a case study in rural village of Tamil Nadu, India, Int. J. Appl. Environ. Sci., 5, 873-878 (2010)
[2] Irajpoor, A. A.; Latif, M., Performance of irrigation projects and their impacts on poverty reduction and its empowerment in arid environment, Int. J. Environ. Sci. Technol., 8, 533-544 (2011)
[3] Carazo, A. F.; Gómez, T.; Molina, J.; Hernández-Díaz, A. G.; Guerrero, F. M.; Caballero, R., Solving a comprehensive model for multi-objective project portfolio selection, Comput. Oper. Res., 37, 630-639 (2010) · Zbl 1175.90159
[4] Ebrahimnejad, S.; Mousavi, S. M.; Tavakkoli-Moghaddam, R.; Hashemi, H.; Vahdani, B., A novel two-phase group decision making approach for construction project selection in a fuzzy environment, Appl. Math. Model., 36, 4197-4217 (2012) · Zbl 1252.91035
[5] Khalili-Damghani, K.; Tavana, M.; Sadi-Nezhad, S., An integrated multi-objective framework for solving multi-period project selection problems, Appl. Math. Comput., 219, 3122-3138 (2012) · Zbl 1309.90038
[6] González, A.; Donnelly, A.; Jones, M.; Chrysoulakis, N.; Lopes, M., A decision-support system for sustainable urban metabolism in Europe, Environ. Impact Assess. Rev., 38, 109-119 (2013)
[7] Cerreta, M.; De Toro, P., Strategic environmental assessment of port plans in Italy: experiences, approaches, tools, Sustainability, 4, 2888-2921 (2012)
[8] Morissey, J.; Iyer-Ranga, U.; McLaughlin, P.; Mills, A., Sustainable planning and design of large-scale metropolitan development projects, Int. J. Sustain. Dev., 16, 190-203 (2013)
[9] Khalili-Damghani, K.; Sadi-Nezhad, S., A hybrid fuzzy multi-criteria group decision making for sustainable project selection, Appl. Soft Comput. J., 13, 339-352 (2013)
[10] Ho, Y. C.; Hsu, W. C.; Chang, C. C., Multi-category and multi-standard project selection with fuzzy value-based time limit, Int. J. Innov. Comput. Inf. Control, 9, 971-989 (2013)
[11] Rouyendegh, B. D., Evaluating projects based on intuitionistic fuzzy group decision making, J. Appl. Math. (2012), 824265 · Zbl 1251.90405
[12] Zhang, Q.; Huang, X.; Tang, L., Optimal multinational capital budgeting under uncertainty, Comput. Math. Appl., 62, 4557-4567 (2011) · Zbl 1236.91095
[13] Marinoni, O.; Higgins, A.; Hajkowicz, S., A multi-criteria knapsack solution to optimise natural resource management project selection, Lecture Notes in Economics and Mathematical Systems, 634, 47-55 (2010) · Zbl 1184.90179
[14] Tupia, M.; Cueva, R.; Guanira, M., An improved genetic algorithm for selection of IT investment projects with a portfolio problem approach, Adv. Inf. Sci. Serv. Sci., 5, 314-323 (2013)
[15] Boyd, S.; Vandenberghe, L., Convex Optimization (2009), Cambridge University Press: Cambridge University Press Cambridge
[16] Fasanghari, M.; Amalnick, M. S.; Chaharsooghi, S. K.; Ko, F. I.S., The fuzzy evaluation of the ICT projects in strategic environment, Int. J. Inf. Technol. Decis. Mak., 10, 873-890 (2011) · Zbl 1241.90194
[17] Hu, J.; Mitchell, J.; Pang, J. S.; Yu, B., On linear programs with linear complementary constraints, J. Glob. Optim., 53, 29-51 (2012) · Zbl 1254.90111
[18] Bhattacharyya, R.; Kumar, P.; Kar, S., Fuzzy R&D portfolio selection of interdependent projects, Comput. Math. Appl., 62, 3857-3870 (2011) · Zbl 1236.91122
[19] Iniestra, J. G.; Gutierrez, J. G., Multi-criteria decisions on interdependent infrastructure transportation projects using an evolutionary-based framework, Appl. Soft Comput., 9, 512-526 (2009)
[20] Hjaek, P.; Olej, V., Selection and classification of capital project using IF-sets, Int. J. Math. Models Methods Appl. Sci., 5, 472-479 (2011)
[21] Zhang, Y.; Fan, Z. P., Uncertain linguistic multiple attribute group decision making approach and its application to software project selection, J. Softw., 6, 662-669 (2011)
[22] Zagonari, F., Using ecosystem services in decision-making to support sustainable development: critiques, model development, a case study, and perspectives, Sci. Total Environ., 548-549, 25-32 (2016)
[23] Chou, J. S.; Ongkowijoyo, C. S., Reliability-based decision making for selection of ready-mix concrete supply using stochastic superiority and inferiority ranking method, Reliability Engineering and System Safety, 137, 29-39 (2015)
[24] Halouani, N.; Chabchoub, H.; Martel, J. M., PROMETHEE-MD-2T method for project selection, Eur. J. Oper. Res., 195, 841-849 (2009) · Zbl 1161.90413
[25] Li, Y. F.; Xie, M.; Goh, T. N., A study of project selection and feature weighting for analogy based software cost estimation, J. Syst. Softw., 82, 241-252 (2009)
[26] Begičević, N.; Divjak, B.; Hunjak, T., Decision-making in prioritization of projects in higher education institutions using the analytic network process approach, Cent. Eur. J. Oper. Res., 18, 341-364 (2010) · Zbl 1204.90063
[27] Juan, Y. K.; Castro, D.; Roper, K., Decision support approach based on multiple objectives and resources for assessing the relocation plan of dangerous hillside aggregations, Eur. J. Oper. Res., 202, 265-272 (2010) · Zbl 1176.90379
[28] Percin, S.; Kahraman, C., An integrated fuzzy multi-criteria decision-making approach for six sigma project selection, Int. J. Comput. Intell. Syst., 3, 610-621 (2010)
[29] Tolga, A. C., A real options approach for software development projects using fuzzy ELECTRE, J. Mult. Valued Logic Soft Comput., 18, 541-560 (2012)
[30] Chang, P. T.; Lee, J. H., A fuzzy DEA and knapsack formulation integrated model for project selection, Comput. Oper. Res., 39, 112-125 (2012) · Zbl 1251.90399
[31] Kim, Y.; Chung, E. S., Fuzzy VIKOR approach for assessing the vulnerability of the water supply to climate change and variability in South Korea, Appl. Math. Model., 37, 9419-9430 (2013)
[32] Awasthi, A.; Chauhan, S. S., A hybrid approach integrating affinity diagram, AHP and fuzzy TOPSIS for sustainable city logistics planning, Appl. Math. Model., 36, 573-584 (2012) · Zbl 1236.90158
[33] Davendralingam, N.; DeLaurentis, D., A robust portfolio optimization approach to system of system architectures, Syst. Eng., 18, 269-283 (2015)
[34] Liu, J.; Jin, X.; Wang, T.; Yuan, Y., Robust multi-period portfolio model based on prospect theory and ALMV-PSO algorithm, Expert Syst. Appl., 42, 7252-7262 (2015)
[35] Nishimura, R.; Hayashi, S.; Fukushima, M., SDP reformulation for robust optimization problems based on nonconvex QP duality, Comput. Optim. Appl., 55, 21-47 (2013) · Zbl 1295.90031
[36] Ghahtarani, A.; Najafi, A. A., Robust goal programming for multi-objective portfolio selection problem, Econ. Model., 33, 588-592 (2013)
[37] Hanasusanto, G. A.; Roitch, V.; Kuhn, D.; Wiesemann, W., A distributionally robust perspective on uncertainty quantification and chance constrained programming, Math. Program. B, 151, 35-62 (2015) · Zbl 1328.90090
[38] Xu, Y.; Huang, G., Development of an improved fuzzy robust chance-constrained programming model for air quality management, Environ. Model. Assess., 20, 535-548 (2015)
[39] Dür, M.; Jargalsaikhan, B.; Still, G., First order solutions in conic programming, Math. Methods Oper. Res., 82, 123-142 (2015) · Zbl 1327.90201
[40] Li, X.; Sun, D.; Toh, K. C., A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Math. Program., 155, 333-373 (2016) · Zbl 1342.90134
[41] Hou, J.; Xia, K.; Fan, Y.; Aslam, N., Surface defects detection of strip steel based on semi-definite programming SVM, J. Inf. Comput. Sci., 12, 3137-3145 (2015)
[42] Li, W., Visualising network communities with a semi-definite programming method, Inf. Sci., 321, 1-13 (2015), art. no. 11590 · Zbl 1390.68505
[43] Kodikara, P. N.; Perera, B. J.C.; Kularathna, M. D.U. P., Stakeholder preference elicitation and modelling in multi-criteria decision analysis—a case study on urban water supply, Eur. J. Oper. Res., 206, 209-220 (2010) · Zbl 1188.90129
[44] Zagonari, F., Choosing among weight-estimation methods for multi-criterion analysis: a case study for the design of multi-purpose offshore platforms, Appl. Soft Comput., 39, 1-10 (2016)
[45] Garcia, S.; Quintana, D.; Galvan, I. M.; Isasi, P., Multi-objective algorithms with resampling for portfolio optimization, Comput. Inf., 32, 777-796 (2013) · Zbl 1413.91129
[46] Knoke, T.; Paul, C.; Härtl, F.; Castro, L. M.; Calvas, B.; Hildebrandt, P., Optimizing agricultural land-use portfolios with scarce data - A non-stochastic model, Ecol. Econ., 120, 250-259 (2015)
[47] Balbás, A.; Balbás, B.; Balbás, R., Good deals and benchmarks in robust portfolio selection, Eur. J. Oper. Res., 250, 666-678 (2015) · Zbl 1346.91198
[48] Löfberg, J., Automatic robust convex programming, Optim. Methods Softw., 27, 115-129 (2012) · Zbl 1242.90289
[49] Wozabal, D., A framework for optimization under ambiguity, Ann. Oper. Res., 193, 21-47 (2012) · Zbl 1255.91454
[50] Cobologlou, H. I.; Buyuktahtakin, I. E., A stochastic multi-criteria decision analysis for sustainable biomass crop selection, Expert Syst. Appl., 42, 6065-6074 (2015)
[51] Ji, Z.; Kim, Y. S.; Chen, A., Multi-objective α-reliable path finding in stochastic networks with correlated link costs: a simulation-based multi-objective genetic algorithm approach, (SMOGA) Expert Syst. Appl., 38, 1515-1528 (2011)
[52] Guo, S. X.; Lu, Z. Z., A non-probabilistic robust reliability method for analysis and design optimization of structures with uncertain-but-bounded parameters, Appl. Math. Model., 39, 1985-2002 (2015) · Zbl 1443.74245
[53] Ganji, A.; Maier, H. R.; Dandy, G. C., A modified Sobol’ sensitivity analysis method for decision-making in environmental problems, Environ. Model. Softw., 75, 15-27 (2016)
[54] Fliege, J.; Werner, R., Robust multi-objective optimization & applications in portfolio optimization, Eur. J. Oper. Res., 234, 422-433 (2014) · Zbl 1304.91191
[55] Kasprzyk, J. R.; Reed, P. M.; Characklis, G. W.; Kirsch, B. R., Many-objective de Novo water supply portfolio planning under deep uncertainty, Environ. Model. Softw., 34, 87-104 (2012)
[56] Scholten, L.; Schuwirth, N.; Reichert, P.; Lienert, J., Tackling uncertainty in multi-criteria decision analysis-An application to water supply infrastructure planning, Eur. J. Oper. Res., 242, 243-260 (2015)
[57] Bilbao-Terol, A.; Arenas-Parra, M.; Cañal-Fernández, V., A fuzzy multi-objective approach for sustainable investments, Expert Syst. Appl., 39, 10904-10915 (2012)
[58] Fang, G.; Lu, Z.; Cheng, L., A new methodology based on covariance and HDMR for global sensitivity analysis, Appl. Math. Model., 39, 5399-5414 (2015) · Zbl 1443.62007
[59] Fernandez, E.; Lopez, E.; Mazcorro, G.; Olmedo, R.; Coello Coello, C. A., Application of the non-outranked sorting genetic algorithm to public project portfolio selection, Inf. Sci., 228, 131-149 (2013) · Zbl 1293.91172
[60] Pishvaee, M. S.; Fazli Khalaf, M., Novel robust fuzzy mathematical programming methods, Appl. Math. Model., 40, 407-418 (2015) · Zbl 1443.90057
[61] Shtern, S.; Ben-Tal, A., A semi-definite programming approach for robust tracking, Math. Program. A, 156, 615-656 (2015) · Zbl 1353.90105
[62] Wong, M. H., Investment models based on clustered scenario trees, Eur. J. Oper. Res., 227, 314-324 (2013) · Zbl 1292.91171
[63] Gühnemann, A.; Laird, J. J.; Pearman, A. D., Combining cost-benefit and multi-criteria analysis to prioritise a national road infrastructure programme, Transp. Policy, 23, 15-24 (2012)
[64] Gao, L.; Hailu, A., Ranking management strategies with complex outcomes: an AHP-fuzzy evaluation of recreational fishing using an integrated agent-based model of a coral reef ecosystem, Environ. Model. Softw., 31, 3-18 (2012)
[65] Eskandari, M.; Homaee, M.; Mahmoodi, S.; Pazira, E.; Van Genuchten, M. T., Optimizing landfill site selection by using land classification maps, Environ. Sci. Pollut. Res., 22, 7754-7765 (2015)
[66] Chen, Y.; Yu, J.; Khan, S., The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making, Environ. Model. Softw., 48, 129-140 (2013)
[67] Gao, L.; Bryan, B. A.; Nolan, M.; Connor, J. D.; Song, X.; Zhao, G., Robust global sensitivity analysis under deep uncertainty via scenario analysis, Environ. Model. Softw., 76, 154-166 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.