×

Soliton solutions and other solutions to the \((4+1)\)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation using modified extended mapping method. (English) Zbl 1535.34004

Summary: Our goal in this paper is to obtain the travelling wave solutions of the \((4+1)\)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation (DSKPE), which considered as a fundamental tool in studying a variety of phenomena appear in many applications of fluid mechanics and ocean engineering. This equation is used to describe the non-elastic and elastic interactions between internal waves. The novelty of this equation is due to the involvement of complex time which further holds importance within the theory of advanced modern nonlinearity. Our Study mainly depend on applying the modified extended mapping method to get the solitary wave solutions and other exact solutions of our model of interest. Many classification of solutions are established like (bright, dark, singular, combo dark-singular) soliton, also hyperbolic wave solution, as well as periodic, singular periodic, exponential and rational solutions. The three-dimensional and contour plots are depicted for some selected solutions to show the dynamics of the extracted solutions.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
35C07 Traveling wave solutions
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Chen, H., Hadronic molecules in B decays, Phys. Rev. D, 105, 9, 94003 (2022) · doi:10.1103/PhysRevD.105.094003
[2] Yang, R.; Kai, Y., Dynamical properties, modulation instability analysis and chaotic behaviors to the nonlinear coupled Schrödinger equation in fiber Bragg gratings, Modern Phys. Lett. B, 38, 2350239 (2023) · doi:10.1142/S0217984923502391
[3] Chen, D.; Wang, Q.; Li, Y.; Li, Y.; Zhou, H.; Fan, Y., A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere, 247, 125869 (2020) · doi:10.1016/j.chemosphere.2020.125869
[4] Ma, J.; Hu, J., Safe consensus control of cooperative-competitive multi-agent systems via differential privacy, Kybernetika, 58, 3, 426-439 (2022) · Zbl 07613053
[5] Luo, R.; Peng, Z.; Hu, J.; Ghosh, BK, Adaptive optimal control of affine nonlinear systems via identifier-critic neural network approximation with relaxed PE conditions, Neural Netw., 167, 588-600 (2023) · Zbl 1530.93204 · doi:10.1016/j.neunet.2023.08.044
[6] Xia, FL; Jarad, F.; Hashemi, MS; Riaz, MB, A reduction technique to solve the generalized nonlinear dispersive mK (m, n) equation with new local derivative, Results Phys., 38, 105512 (2022) · doi:10.1016/j.rinp.2022.105512
[7] Han, XL; Hashemi, MS; Samei, ME; Akgül, A.; El Din, SM, Analytical treatment on the nonlinear Schrödinger equation with the parabolic law, Results Phys., 49, 106544 (2023) · doi:10.1016/j.rinp.2023.106544
[8] Akbulut, A.; Mirzazadeh, M.; Hashemi, MS; Hosseini, K.; Salahshour, S.; Park, C., Triki-Biswas model: its symmetry reduction, Nucci’s reduction and conservation laws, Int. J. Mod. Phys. B, 37, 7, 2350063 (2023) · doi:10.1142/S0217979223500637
[9] Atilgan, Emrah; Senol, Mehmet; Kurt, Ali; Tasbozan, Orkun, New wave solutions of time-fractional coupled Boussinesq-Whitham-Broer-Kaup equation as a model of water waves, China Ocean Eng., 33, 477-483 (2019) · doi:10.1007/s13344-019-0045-1
[10] Esen, Handenur, Ozdemir, Neslihan, Secer, Aydin, Bayram, Mustafa: traveling wave structures of some fourth-order nonlinear partial differential equations, J. Ocean Eng. Sci., 8, 2, 124-132 (2021) · doi:10.1016/j.joes.2021.12.006
[11] Osman, MS, New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics, Pramana, 93, 2, 26 (2019) · doi:10.1007/s12043-019-1785-4
[12] El-Sheikh, Mohamed M. A.; Seadawy, Aly R.; Ahmed, Hamdy M.; Arnous, Ahmed H.; Rabie, Wafaa B., Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations, Phys. A Stat. Mech. Appl., 537 (2020) · Zbl 07571798 · doi:10.1016/j.physa.2019.122662
[13] Nofal, Taher A.; Samir, Islam; Badra, Niveen; Darwish, Adel; Ahmed, Hamdy M.; Arnous, Ahmed H., Constructing new solitary wave solutions to the strain wave model in micro-structured solids, Alex. Eng. J., 61, 12, 11879-11888 (2022) · doi:10.1016/j.aej.2022.05.050
[14] Nofal, Taher A.; Samir, Islam; Badra, Niveen; Darwish, Adel; Ahmed, Hamdy M.; Arnous, Ahmed H., Constructing new solitary wave solutions to the strain wave model in micro-structured solids, Alex. Eng. J., 61, 12, 11879-11888 (2022) · doi:10.1016/j.aej.2022.05.050
[15] Ali, M.; Alquran, M.; BaniKhalid, A., Symmetric and asymmetric binary-solitons to the generalized two-mode KdV equation: novel findings for arbitrary nonlinearity and dispersion parameters, Results Phys., 45, 106250 (2023) · doi:10.1016/j.rinp.2023.106250
[16] Alquran, M., Optical bidirectional wave solutions to new two-model extension of the coupled KdV-Schrodinger equations, Opt. Quant. Electron., 53, 10, 588 (2021) · doi:10.1007/s11082-021-03245-8
[17] Alquran, M.; Ali, M.; Al-Khaled, K., Solitary wave solutions to shallow water waves arising in fluid dynamics, Nonlinear Stud., 19, 4, 555-562 (2012) · Zbl 1290.35029
[18] Jaradat, I.; Alquran, M.; Ali, M., A numerical study on weak-dissipative two-mode perturbed Burgers’ and Ostrovsky models: right-left moving waves, Eur. Phys. J. Plus, 133, 1-6 (2018) · doi:10.1140/epjp/i2018-12026-x
[19] Raza, N.; Rani, B.; Chahlaoui, Y.; Shah, NA, A variety of new rogue wave patterns for three coupled nonlinear Maccari’s models in complex form, Nonlinear Dyn., 111, 1-19 (2023) · doi:10.1007/s11071-023-08839-3
[20] Wang, KJ; Wang, GD; Shi, F., Diverse optical solitons to the Radhakrishnan-Kundu-Lakshmanan equation for the light pulses, J. Nonlinear Opt. Phys. Mater. (2023) · doi:10.1142/S0218863523500741
[21] Wang, KJ, Dynamics of breather, multi-wave, interaction and other wave solutions to the new (3+ 1)-dimensional integrable fourth-order equation for shallow water waves, Int. J. Numer. Methods Heat Fluid Flow, 33, 11, 3734-3747 (2023) · doi:10.1108/HFF-07-2023-0385
[22] Wang, KJ, Resonant multiple wave, periodic wave and interaction solutions of the new extended (3+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dyn., 111, 1-13 (2023)
[23] Wang, KJ; Xu, P.; Shi, F., Nonlinear dynamic behaviors of the fractional (3+ 1)-dimensional modified zakharov - kuznetsov equation, Fractals, 31, 2350088 (2023) · doi:10.1142/S0218348X23500883
[24] Wang, KJ; Liu, JH; Si, J.; Shi, F.; Wang, GD, N-soliton, breather, lump solutions and diverse traveling wave solutions of the fractional (2+ 1)-dimensional boussinesq equation, Fractals, 31, 3, 2350023 (2023) · Zbl 1521.35142 · doi:10.1142/S0218348X23500238
[25] Gao, D.; Lü, X.; Peng, MS, Study on the (2+ 1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation, Phys. Scr., 98, 9, 095225 (2023) · doi:10.1088/1402-4896/ace8d0
[26] Chen, SJ; Lü, X.; Yin, YH, Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model, Theor. Phys., 75, 055005 (2023) · Zbl 1519.35260
[27] Chen, Si-Jia; Yin, Yu-Hang; Lü, Xing, Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations, Commun. Nonlinear Sci. Numer. Simul., 121, 107205 (2023) · Zbl 1531.35248
[28] Chen, H.; Chen, W.; Liu, X.; Liu, X., Establishing the first hidden-charm pentaquark with strangeness, Eur. Phys. J. C, 81, 5, 409 (2021) · doi:10.1140/epjc/s10052-021-09196-4
[29] Yin, Yu-Hang; Lü, Xing, Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the CQ-NLSE, Commun. Nonlinear Sci. Numer. Simul., 126, 107441 (2023) · Zbl 1528.35172 · doi:10.1016/j.cnsns.2023.107441
[30] Yin, Yu-Hang; Lü, Xing; Ma, Wen-Xiu, Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 108, 4181-4194 (2022) · doi:10.1007/s11071-021-06531-y
[31] Liu, Bing, Zhang, Xue-Er, Wang, Bin, Lü, Xing: Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential, Modern Phys. Lett. B, 36, 15, 2250057 (2022) · doi:10.1142/S0217984922500579
[32] Yin, Ming-Ze; Zhu, Qing-Wen; Lü, Xing, Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model, Nonlinear Dyn., 106, 1347-1358 (2021) · doi:10.1007/s11071-021-06587-w
[33] Lü, Xing; Hui, Hong-wen; Liu, Fei-fei; Bai, Ya-li, Stability and optimal control strategies for a novel epidemic model of COVID-19, Nonlinear Dyn., 106, 1491-1507 (2021) · doi:10.1007/s11071-021-06524-x
[34] Lü, Xing; Chen, Si-Jia, Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear Dyn., 103, 947-977 (2021) · Zbl 1516.35175 · doi:10.1007/s11071-020-06068-6
[35] Zhao, Yi-Wei; Xia, Jun-Wen; Lü, Xing, The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system, Nonlinear Dyn., 108, 4195-4205 (2022) · doi:10.1007/s11071-021-07100-z
[36] Ma, Yu-Lan; Wazwaz, Abdul-Majid; Li, Bang-Qing, Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear Maccari system, Nonlinear Dyn., 111, 18331-18344 (2023) · doi:10.1007/s11071-023-08798-9
[37] Li, Bang-Qing; Ma, Yu-Lan, Breather, soliton molecules, soliton fusions and fissions, and lump wave of the Caudrey-Dodd-Gibbon equation, Phys. Scr., 98, 095214 (2023) · doi:10.1088/1402-4896/aceb25
[38] Ma, YL; Li, BQ, Interaction behaviors between solitons, breathers and their hybrid forms for a short pulse equation, Qual. Theory Dyn. Syst., 22, 146 (2023) · Zbl 1522.35143 · doi:10.1007/s12346-023-00844-6
[39] Ma, YL; Li, BQ, Dynamics of soliton resonances and soliton molecules for the AB system in two-layer fluids, Nonlinear Dyn., 111, 13327-13341 (2023) · doi:10.1007/s11071-023-08529-0
[40] Li, Bang-Qing; Ma, Yu-Lan, A complex short pulse system in optical-fiber communications: Rogue waves and phase transitions, Appl. Math. Lett., 135, 108399 (2023) · Zbl 1498.78033 · doi:10.1016/j.aml.2022.108399
[41] Mirabutalibov, M.; Aliyeva, M., Study of nuclear exotics by high-energy electrons scattering, Eur. Phys. J. Plus, 138, 7, 1-5 (2023) · doi:10.1140/epjp/s13360-023-04291-9
[42] Ma, WX; Fuchssteiner, B., Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation, Int. J. Non-Linear Mech., 31, 3, 329-338 (1996) · Zbl 0863.35106 · doi:10.1016/0020-7462(95)00064-X
[43] Alquran, M., Classification of single-wave and bi-wave motion through fourth-order equations generated from the Ito model, Phys. Scr., 98, 085207 (2023) · doi:10.1088/1402-4896/ace1af
[44] Alquran, M.; Jaradat, I., Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2+ 1)-dimensional Nizhnik-Novikov-Veselov equation, Mathematics, 11, 4, 861 (2023) · doi:10.3390/math11040861
[45] Akinyemi, Lanre; Şenol, Mehmet; Iyiola, Olaniyi S., Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method, Math. Comput. Simul., 182, 211-233 (2021) · Zbl 1524.35672 · doi:10.1016/j.matcom.2020.10.017
[46] Razzaq, Waseem; Zafar, Asim; Ahmed, Hamdy M.; Rabie, Wafaa B., Construction solitons for fractional nonlinear Schrödinger equation with \(\beta \)-time derivative by the new sub-equation method, J. Ocean Eng. Sci. (2022) · doi:10.1016/j.joes.2022.06.013
[47] Samir, Islam; Badra, Niveen; Ahmed, Hamdy M.; Arnous, Ahmed H.; Ghanem, Ahmed S., Solitary wave solutions and other solutions for Gilson-Pickering equation by using the modified extended mapping method, Results Phys., 36, 105427 (2022) · Zbl 1503.35060 · doi:10.1016/j.rinp.2022.105427
[48] Khalil, Tarek A.; Badra, Niveen; Ahmed, Hamdy M.; Rabie, Wafaa B., Bright solitons for twin-core couplers and multiple-core couplers having polynomial law of nonlinearity using Jacobi elliptic function expansion method, Alex. Eng. J., 61, 12, 11925-11934 (2022) · doi:10.1016/j.aej.2022.05.042
[49] Alhojilan, Yazid; Ahmed, Hamdy M., Novel analytical solutions of stochastic Ginzburg-Landau equation driven by Wiener process via the improved modified extended tanh function method, Alex. Eng. J., 72, 269-274 (2023) · doi:10.1016/j.aej.2023.04.005
[50] Alquran, M.; Al Smadi, T., Generating new symmetric bi-peakon and singular bi-periodic profile solutions to the generalized doubly dispersive equation, Opt. Quantum Electr., 55, 8, 736 (2023) · doi:10.1007/s11082-023-05035-w
[51] Ma, YL; Li, BQ; Fu, YY, A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Methods Appl. Sci., 41, 9, 3316-3322 (2018) · Zbl 1394.35507 · doi:10.1002/mma.4818
[52] Ma, YL; Li, BQ; Wang, C., A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211, 1, 102-107 (2009) · Zbl 1400.35203
[53] Li, BQ; Ma, YL, Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials, J. Supercond. Nov. Magn., 31, 1773-1778 (2018) · doi:10.1007/s10948-017-4406-9
[54] Li, BQ; Ma, YL, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144, 149-155 (2017) · doi:10.1016/j.ijleo.2017.06.114
[55] Li, BQ; Ma, YL, The non-traveling wave solutions and novel fractal soliton for the (2 + 1)-dimensional Broer-Kaup equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 16, 1, 144-149 (2011) · Zbl 1221.35314 · doi:10.1016/j.cnsns.2010.02.011
[56] Zhang, M.; Ma, YL; Li, BQ, Novel loop-like solitons for the generalized Vakhnenko equation, Chin Phys B, 22, 3 (2013) · doi:10.1088/1674-1056/22/3/030511
[57] Ma, Wen-Xiu; Lee, Jyh-Hao, A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation, Chaos Solit. Fract., 42, 3, 1356-1363 (2009) · Zbl 1198.35231 · doi:10.1016/j.chaos.2009.03.043
[58] Ma, Wen-Xiu, AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials, Appl. Math. Lett., 145 (2023) · Zbl 1527.37072 · doi:10.1016/j.aml.2023.108775
[59] Ma, Wen-Xiu, A six-component integrable hierarchy and its Hamiltonian formulation, Modern Phys. Lett. B, 37, 32, 2350143 (2023) · doi:10.1142/S0217984923501439
[60] Ma, Wen-Xiu, A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure, Rom. Rep. Phys., 75, 115 (2023) · doi:10.59277/RomRepPhys.2023.75.115
[61] Ma, Wen-Xiu, Four-component integrable hierarchies of Hamiltonian equations with \((m+n+2)\) th-order Lax pairs, Theor Math Phys., 216, 1180-1188 (2023) · Zbl 1521.37074 · doi:10.1134/S0040577923080093
[62] Fokas, AS, Integrable nonlinear evolution partial differential equations in 4+ 2 and 3+ 1 dimensions, Phys. Rev. Lett., 96, 19, 190201 (2006) · Zbl 1228.35199 · doi:10.1103/PhysRevLett.96.190201
[63] Ahmad, Israr; Jalil, Abdul; Ullah, Aman; Ahmad, Shabir; De la Sen, Manuel, Some new exact solutions of (4+1)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation, Results Phys., 45, 106240 (2023) · doi:10.1016/j.rinp.2023.106240
[64] Akram, G.; Sadaf, M.; Khan, MA, Dynamics investigation of the (4+1)-dimensional Fokas equation using two effective techniques, Results Phys., 42 (2022) · doi:10.1016/j.rinp.2022.105994
[65] Wazwaz, Abdul-Majid, A variety of multiple-soliton solutions for the integrable (4+1)-dimensional Fokas equation, Waves Random Complex Media, 31, 1, 46-56 (2021) · Zbl 1538.35122 · doi:10.1080/17455030.2018.1560515
[66] Verma, Pallavi; Kaur, Lakhveer, New exact solutions of the (4+1)-dimensional Fokas Equation Via Extended Version of \(\exp (-\psi (\kappa ))\)-expansion method, Int. J. Appl. Comput. Math., 7, 3, 104 (2021) · Zbl 1485.35101 · doi:10.1007/s40819-021-01051-0
[67] Ma, WX, N-soliton solutions and the Hirota conditions in (2+1)-dimensions, Opt. Quant. Electron., 52, 511 (2020) · doi:10.1007/s11082-020-02628-7
[68] Samir, I.; Badra, N.; Ahmed, HM; Arnous, AH; Ghanem, AS, Solitary wave solutions and other solutions for Gilson-Pickering equation by using the modified extended mapping method, Results Phys., 36, 105427 (2022) · doi:10.1016/j.rinp.2022.105427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.