×

Distributed formation control for multiple non-holonomic wheeled mobile robots with velocity constraint by using improved data-driven iterative learning. (English) Zbl 1508.70010

Summary: In this paper, a distributed proportional-integral data-driven iterative learning control (PI-DDILC) algorithm is developed to achieve the formation problem for non-holonomic and velocity constrained wheeled mobile robots (WMRs) under repeatable operation environment. Firstly, the formation problem is transformed into a tracking problem with a certain deviation from the reference trajectory. And a distributed kinematics control algorithm is designed by using leader-follower strategy and graph theory. Then, to solve the problem of unknown dynamic model, the relationship between WMR’s output and input is first derived by utilizing the iteration-domain dynamical linearization technique. After that, the improved data-driven iterative learning dynamics control algorithm is provided, which includes both proportional and integral terms along the iteration axis. This algorithm can ensure a group of WMRs to realize formation and only use I/O data of each WMR. Compared with DDILC, PI-DDILC can significantly enhance the response speed and transient performance of WMR system formation. The excellence of the improved algorithm is certified by simulation, and a performance index is designed to quantify the results of the two on formation performance.

MSC:

70E60 Robot dynamics and control of rigid bodies
70F25 Nonholonomic systems related to the dynamics of a system of particles
93A15 Large-scale systems
93B47 Iterative learning control
93C85 Automated systems (robots, etc.) in control theory
Full Text: DOI

References:

[1] Kramer, J.; Scheutz, M., Development environments for autonomous mobile robots: a survey, Auton Robots, 22, 2, 101-132 (2007)
[2] Bu, X. H.; Cui, L. Z.; Hou, Z. S., Formation control for a class of nonlinear multiagent systems using model-free adaptive iterative learning, Int. J. Robust Nonlin., 48, 4, 988-1001 (2003)
[3] Farinelli, A.; Iocchi, L.; Nardi, D., Multirobot systems: a classificatio n focused on coordination, IEEE Trans. Syst. Man. Cybern B. Cybern., 34, 5, 2015-2028 (2004)
[4] Park, B. S.; Park, J. B.; Choi, Y. H., Adaptive formation control of electrically driven nonholonomic mobile robots with limited information, IEEE Trans. Syst. Man. Cybern B. Cybern., 41, 4, 0-1075 (2011)
[5] Arrichiello, F.; Chiaverini, S.; Indiveri, G., The null-space-based behavioral control for mobile robots with velocity actuator saturations, Int. J. Rob. Res., 29, 10, 1317-1337 (2010)
[6] Do, K. D.; Lau, M. W., Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges, J. Intell. Robot Syst., 64, 2, 245-275 (2011) · Zbl 1245.93084
[7] Yoo, S. J.; Kim, T. H., Predesignated fault-tolerant formation tracking quality for networked uncertain nonholonomic mobile robots in the presence of multiple faults, Automatica, 77, 380-387 (2017) · Zbl 1355.93060
[8] Wang, J.; Xia, J.; Shen, H.; Xing, M.; Park, J. H., H infinity synchronization for fuzzy markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule, IEEE Trans. Fuzzy Syst., 1 (2020)
[9] Wang, J.; Yang, C.; Shen, H.; Cao, J.; Rutkowski, L., Sliding-mode control for slow-sampling singularly perturbed systems subject to markov jump parameters, IEEE Trans. Syst. Man Cybern. Syst., 99, 1-8 (2020)
[10] Wu, B.; Chang, X. H.; Zhao, X. D., Fuzzy h infinity output feedback control for nonlinear NCSs with quantization and stochastic communication protocol, IEEE Trans. Fuzzy Syst. (2020)
[11] Li, Z. M.; Chang, X. H.; Park, J. H., Quantized static output feedback fuzzy tracking control for discrete-time nonlinear networked systems with asynchronous event-triggered constraints, IEEE Trans. Syst. Man Cybern. Syst. (2019)
[12] Dong, W. J., Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory, IEEE Trans. Robot., 28, 1, 262-268 (2012)
[13] Li, Z. J.; Yuan, W.; Chen, Y., Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems, IEEE Trans. Neural Netw. Learn Syst., 1-10 (2018)
[14] Wang, W.; Huang, J.; Wen, C., Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots, Automatica, 50, 4, 1254-1263 (2014) · Zbl 1298.93212
[15] Maghenem, M.; Loria, A.; Panteley, E., A cascades approach to formation-tracking stabilization of force-controlled autonomous vehicles, IEEE Trans. Autom. Control, 63, 8, 2662-2669 (2018) · Zbl 1423.93276
[16] Yoo, S. J.; Kim, T. H., Distributed formation tracking of networked mobile robots under unknown slippage effects, Automatica, 54, 100-106 (2015) · Zbl 1318.93067
[17] Peng, Z. X.; Yang, S. C.; Wen, G. G., Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots, Neurocomputing, 173, 1485-1494 (2015)
[18] Dierks, T.; Jagannathan, S., Neural network output feedback control of robot formations, IEEE Trans. Syst. Man. Cybern B. Cybern., 40, 2, 383-399 (2010)
[19] Ru, T. T.; Xia, J. W.; Huang, X., Reachable set estimation of delayed fuzzy inertial neural networks with Markov jumping parameters, J. Frankl. Inst., 357, 11, 6882-6898 (2020) · Zbl 1447.93020
[20] Xia, Y.d.; Wang, J.; Meng, B., Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems, Appl. Math. Comput., 379, 15, 125225 (2020) · Zbl 1461.93421
[21] Hou, Z. G.; Zou, A. M.; Cheng, L., Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach, IEEE Trans. Control Syst. Technol., 17, 4, 803-815 (2009)
[22] Defoort, M.; Floquet, T.; Kokosy, A., Sliding-mode formation control for cooperative autonomous mobile robots, IEEE Trans. Ind. Electron., 55, 11, 3944-3953 (2008)
[23] Chang, X. H.; Liu, Y.; Shen, M. Q., Resilient control design for lateral motion regulation of intelligent vehicle, IEEE ASME Trans. Mechatron., 24, 6, 2488-2497 (2019)
[24] Wang, X. F.; Li, X.; Wang, J. H., Data-driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton, Inf. Sci., 327, 246-257 (2016) · Zbl 1386.93071
[25] Bu, X. H.; Hou, Z. S.; Zhang, H. W., Data-driven multiagent systems consensus tracking using model free adaptive control, IEEE Trans. Neural Netw. Learn Syst., 29, 5, 1514-1524 (2018)
[26] Wang, Y. C.; Li, H. F.; Qiu, X. J., Consensus tracking for nonlinear multi-agent systems with unknown disturbance by using model free adaptive iterative learning control, Appl. Math. Comput., 365, 15, 1-14 (2020) · Zbl 1433.93085
[27] Peng, Z. N.; Sun, Y. K.; Xiang, Q. W., A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning, Appl. Math. Comput., 369, 15, 1-12 (2020) · Zbl 1433.93008
[28] Ye, Y.; Sun, Y. K.; Xiang, Q. W., Model-free adaptive control for three-degree-of-freedom hybrid magnetic bearings, Front Inf. Tech. El., 18, 12, 2035-2045 (2017)
[29] Xu, D. Z.; Liu, F.; Jiang, B., An improved data driven model free adaptive constrained control for a solid oxide fuel cell, IET Control Theory Appl., 10, 12, 1412-1419 (2016)
[30] Shi, X. X.; Shen, M. Q.; Qiu, X. J., A new approach to feedback feed-forward iterative learning control with random packet dropouts, Appl. Math. Comput., 10, 12, 1412-1419 (2016)
[31] Li, Y.; Jiang, W., Fractional order nonlinear systems with delay in iterative learning control, Appl. Math. Comput., 257, 15, 546-552 (2015) · Zbl 1338.93179
[32] Ma, F. L.; Li, C. D.; Huang, T. W., Fractional order nonlinear systems with delay in iterative learning control, Appl. Math. Comput., 218, 8, 4333-4340 (2011) · Zbl 1239.93042
[33] Kang, M. K.; Lee, J. S.; Han, K. L., Kinematic path-tracking of mobile robot using iterative learning control, J. Robot Syst., 22, 2, 111-121 (2005) · Zbl 1133.70303
[34] Xu, J., Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints, Automatica, 94, 63-71 (2008) · Zbl 1400.93204
[35] Hou, Z. S.; Jin, S. T., Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems, IEEE Trans. Neural Netw., 22, 12, 2173-2188 (2011)
[36] Hou, Z. S.; Chi, R. H.; Gao, H., An overview of dynamic linearization-based data-driven control and applications, IEEE Trans. Ind Electron., 64, 5, 4076-4090 (2017)
[37] Wu, Y.; Wang, Y., Asymptotic tracking control of uncertain nonholonomic wheeled mobile robot with actuator saturation and external disturbances, Neural Comput Appl., 32, 2, 8735-8745 (2019)
[38] Yang, S.; Xu, J. X.; Huang, D., Optimal iterative learning control design for multi-agent systems consensus tracking, Syst. Control Lett., 69, 80-89 (2014) · Zbl 1288.93011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.