×

Numerical simulation of bending stiffness analysis for spring linkage applied to in-pipe robot. (English) Zbl 1459.70011

Summary: Spring linkage can be applied to in-pipe robots for connecting different modules together and can make it pass through elbows more easily. However, its stiffness cannot be set to be too hard or too soft. This paper tries to make a balance between the compressive stiffness and the bending stiffness of the spring. After a brief introduction to the construction mechanism and some assumptions, the mathematical representation of the spring bending stiffness was deduced based on the Kirchhoff theory which describes the spatial curve with displacement rather than time. Then, some simulations aiming at verifying the correctness of the deduced bending stiffness expression were carried out. Finally, the relationship between the two rigidities was found out, which helps to find a way to decrease the bending stiffness of spring while keeping its compressive stiffness strong enough.

MSC:

70B15 Kinematics of mechanisms and robots
Full Text: DOI

References:

[1] Zhang, Y. S.; Jiang, S. Y.; Zhang, X. W.; Ruan, X. Y.; Guo, D. M., A variable-diameter capsule robot based on multiple wedge effects, IEEE/ASME Transactions on Mechatronics, 16, 2, 241-254 (2011) · doi:10.1109/tmech.2009.2039942
[2] Ono, M.; Kato, S., A study of an earthworm type inspection robot movable in long pipes, International Journal of Advanced Robotic Systems, 7, 1, 85-90 (2010) · doi:10.5772/7248
[3] Moghaddam, M. M.; Arbabtafti, M.; Hadi, A., In-pipe inspection crawler adaptable to the pipe interior diameter, International Journal of Robotics & Automation, 26, 2, 135-145 (2011) · doi:10.2316/journal.206.2011.2.206-3078
[4] Chen, J.; Chen, T.; Deng, Z. Q., Dynamic properties on double driving articulated in-pipe robot inspecting system, Applied Mechanics and Materials, 128-129, 1430-1433 (2012) · doi:10.4028/www.scientific.net/amm.128-129.1430
[5] Hu, Z.; Wang, Y.; Yu, S.; Cui, G., A method to enhance fidelity of force feedback control in virtual and human-robot micro interaction cardiovascular intervention surgery, The International Journal of Advanced Manufacturing Technology, 105, 12, 4883-4897 (2019) · doi:10.1007/s00170-019-03936-3
[6] Tourajizadeh, H.; Rezaei, M.; Sedigh, A. H., Optimal control of screw in-pipe inspection robot with controllable pitch rate, Journal of Intelligent & Robotic Systems, 90, 3-4, 269-286 (2018) · doi:10.1007/s10846-017-0658-7
[7] Sudhawiyangkul, T.; Yoshida, K.; Eom, S. I.; Kim, J.-w., A novel bending microactuator with integrated flexible electro-rheological microvalves using an alternating pressure source for multi-actuator systems, Microsystem Technologies, 26, 5, 1507-1519 (2020) · doi:10.1007/s00542-019-04685-9
[8] Liu, Q.; Zhao, J.; Zhu, H.; Zheng, W.; Yang, Y., A novel double bevel support structure for downhole robot, Arabian Journal for Science and Engineering, 44, 2, 1069-1079 (2019) · doi:10.1007/s13369-018-3316-x
[9] Yaqub, S.; Ali, A.; Usman, M., A spiral curve gait design for a modular snake robot moving on a pipe, International Journal of Control, Automation and Systems, 17, 10, 2565-2573 (2019) · doi:10.1007/s12555-019-0074-9
[10] Shi, Y.; Mu, Z.; Cai, M.; Song, H.; Wang, Y., Advances in motion control of gas pipeline detection robot, Science China Technological Sciences, 63, 5, 877-878 (2020) · doi:10.1007/s11431-019-1435-2
[11] Moreira, F.; Abundis, A.; Aguirre, M.; Castillo, J.; Bhounsule, P. A., An inchworm-inspired robot based on modular body, electronics and passive friction pads performing the two-anchor crawl gait, Journal of Bionic Engineering, 15, 5, 820-826 (2018) · doi:10.1007/s42235-018-0069-x
[12] Wang, Z.; Guo, S.; Fu, Q.; Guo, J., Characteristic evaluation of a magnetic-actuated microrobot in pipe with screw jet motion, Microsystem Technologies, 25, 2, 719-727 (2019) · doi:10.1007/s00542-018-4000-5
[13] Schempf, H.; Mutschler, E.; Gavaert, A.; Skoptsov, G.; Crowley, W., Visual and nondestructive evaluation inspection of live gas mains using the explorer (TM) family of pipe robots, Journal of Field Robotics, 27, 3, 217-249 (2010) · doi:10.1002/rob.20330
[14] Adria, O.; Streich, H.; Hertzberg, J., Dynamic replanning in uncertain environments for a sewer inspection robot, International Journal of Advanced Robotic Systems, 1, 1, 33-38 (2008) · doi:10.5772/5617
[15] Wakimoto, S.; Nakajima, J.; Takata, M.; Kanda, T.; Suzumori, K., A Micro Snake-like Robot for Small Pipe Inspection (2003), Nagoya, Japan: Institute of Electrical and Electronics Engineers Inc, Nagoya, Japan
[16] Hirose, S.; Ohno, H.; Mitsui, T.; Suyama, K., Design of in-pipe inspection vehicles for 25,50,150 pipes, Proceedings of the IEEE International Conference on Robotics and Automation
[17] Lin, C.; Hu, Y.; Wei, Y.; Cai, Z., Characteristics analysis of supporting and locking mechanism based on the non-circular gear compound transmission, Journal Of Mechanical Science And Technology, 34, 6, 2561-2571 (2020) · doi:10.1007/s12206-020-0531-7
[18] Takeshima, H.; Takayama, T., Development of a steerable in-pipe locomotive device with six braided tubes, ROBOMECH Journal, 5, 1 (2018) · doi:10.1186/s40648-018-0127-5
[19] Muramatsu, M.; Namiki, N.; Koyama, R.; Suga, Y., Autonomous Mobile Robot in Pipe for Piping Operations (2000), Takamatsu, Japan: Institute of Electrical and Electronics Engineers Inc, Takamatsu, Japan
[20] Iwashina, S.; Hayashi, I.; Iwatsuki, N.; Nakamura, K., Development of In-Pipe Operation Micro Robots (1994), Nagoya, Japan: IEEE, Nagoya, Japan
[21] Xu, C. Q., Research on Design and Motion Stability of a Novel Creeping Micro In-Pipe Robot (2010), Changsha, China: National University of Defense Technology, Changsha, China
[22] Hayashi, I.; Iwatsuki, N.; Iwashina, S., Running Characteristics of a Screw-Principle Microrobot in a Small Bent Pipe (1995), Nagoya, Japan: IEEE, Nagoya, Japan
[23] Brown, L.; Carrasco, J.; Watson, S.; Lennox, B., Elbow detection in pipes for autonomous navigation of inspection robots, Journal of Intelligent & Robotic Systems, 95, 2, 527-541 (2019) · doi:10.1007/s10846-018-0904-7
[24] Tu, Q.; Liu, Q.; Ren, T.; Li, Y., Obstacle crossing and traction performance of active and passive screw pipeline robots, Journal of Mechanical Science and Technology, 33, 5, 2417-2427 (2019) · doi:10.1007/s12206-019-0440-9
[25] Liu, Q.; Zhao, J.; Zhu, H.; Zhang, W., Mechanical model of drilling robot driven by the differential pressure of drilling fluid, Arabian Journal for Science and Engineering, 44, 2, 1447-1458 (2019) · doi:10.1007/s13369-018-3578-3
[26] Perreault, S.; Cardou, P.; Gosselin, C., Approximate static balancing of a planar parallel cable-driven mechanism based on four-bar linkages and springs, Mechanism and Machine Theory, 79, 64-79 (2014) · doi:10.1016/j.mechmachtheory.2014.04.008
[27] Liu, F. B.; Cheng, Y. M., The improved element-free galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels, International Journal of Applied Mechanics, 10 (2018) · doi:10.1142/s1758825118500473
[28] Cheng, J., Data analysis of the factors influencing the industrial land leasing in Shanghai based on mathematical models, Mathematical Problems in Engineering, 2020 (2020) · doi:10.1155/2020/9346863
[29] Chen, L.; Ma, H. P.; Cheng, Y. M., Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems, Chinese Physics, 22, 5 (2013) · doi:10.1088/1674-1056/22/5/050202
[30] Peng, M.; Cheng, Y., A boundary element-free method (BEFM) for two-dimensional potential problems, Engineering Analysis with Boundary Elements, 33, 1, 77-82 (2009) · Zbl 1160.65348 · doi:10.1016/j.enganabound.2008.03.005
[31] Liew, K. M.; Cheng, Y., Complex variable boundary element-free method for two-dimensional elastodynamic problems, Computer Methods in Applied Mechanics and Engineering, 198, 49-52, 3925-3933 (2009) · Zbl 1231.74502 · doi:10.1016/j.cma.2009.08.020
[32] Liu, Z.; Wei, G.; Wang, Z., The radial basis reproducing kernel particle method for geometrically nonlinear problem of functionally graded materials, Applied Mathematical Modelling, 85, 244-272 (2020) · Zbl 1481.74124 · doi:10.1016/j.apm.2020.04.005
[33] Liu, Z.; Gao, H. F.; Wei, G. F.; Wang, Z. M., The meshfree analysis of elasticity problem utilizing radial basisreproducing kernel particle method, Results in Physics, 17 (2020) · doi:10.1016/j.rinp.2020.103037
[34] Liu, Z.; Wei, G.; Wang, Z., Numerical solution of functionally graded materials based on radial basis reproducing kernel particle method, Engineering Analysis with Boundary Elements, 111, 32-43 (2020) · Zbl 1464.65262 · doi:10.1016/j.enganabound.2019.09.023
[35] Liu, Z.; Wei, G. F.; Wang, Z. M., Numerical analysis of functionally graded materials using reproducing kernel particle method, International Journal of Applied Mechanics, 11, 6 (2019) · doi:10.1142/s1758825119500601
[36] Wang, B. H.; Ma, Y. Q.; Cheng, Y. M., The improved complex variable element-free Galerkin method for bending problem of thin plate on elastic foundations, International Journal of Applied Mechanics, 11, 10 (2019) · doi:10.1142/s1758825119501059
[37] Wu, Q.; Liu, F. B.; Cheng, Y. M., The interpolating element-free Galerkin method for three-dimensional elastoplasticity problems, Engineering Analysis with Boundary Elements, 115, 156-167 (2020) · Zbl 1464.74218 · doi:10.1016/j.enganabound.2020.03.009
[38] Liu, F. B.; Wu, Q.; Cheng, Y. M., A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems, International Journal of Applied Mechanics, 11, 1 (2019) · doi:10.1142/s1758825119500066
[39] Peng, P. P.; Wu, Q.; Cheng, Y. M., The dimension splitting reproducing kernel particle method for three-dimensional potential problems, International Journal for Numerical Methods in Engineering, 121, 1, 146-164 (2020) · Zbl 1537.65171 · doi:10.1002/nme.6203
[40] Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity (1927), New York, NY, USA: Dover Publications, New York, NY, USA · JFM 53.0752.01
[41] Eqra, N.; Taghvaei, S.; Vatankhah, R., Optimal kinematic design of a single-DOF planar grasper based on metaheuristic optimization, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 10 (2019) · doi:10.1007/s40430-019-1923-4
[42] Liu, Y. Z., Nonlinear Mechanics of Thin Elastic Rod-Theoretical Basis of Mechanical Model of DNA (2006), Beijing, China: Qtinghua University Press, Beijing, China
[43] Miyazaki, Y.; Kondo, K., Analytical solution of spatial elastica and its application to kinking problem, International Journal of Solids and Structures, 34, 27, 3619-3636 (1997) · Zbl 0942.74529 · doi:10.1016/s0020-7683(96)00223-5
[44] Huang, R.; Zheng, S. J.; Liu, Z. S.; Ng, T. Y., Recent advances of the constitutive models of smart materials-hydrogels and shape memory polymers, International Journal of Applied Mechanics, 12, 2 (2020) · doi:10.1142/s1758825120500143
[45] Arun Sundaram, B.; Kesavan, K.; Parivallal, S., Recent advances in health monitoring and assessment of in-service oil and gas buried pipelines, Journal of The Institution of Engineers (India): Series A, 99, 4, 729-740 (2018) · doi:10.1007/s40030-018-0316-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.