×

Numerical solution of sine-Gordon equation with the local kriging meshless method. (English) Zbl 1459.65196

Summary: This paper develops a local Kriging meshless solution to the nonlinear 2 + 1-dimensional sine-Gordon equation. The meshless shape function is constructed by Kriging interpolation method to have Kronecker delta function property for the two-dimensional field function, which leads to convenient implementation of imposing essential boundary conditions. Based on the local Petrov-Galerkin formulation and the center difference method for time discretization, a system of nonlinear discrete equations is obtained. The numerical examples are presented and the numerical solutions are found to be in good agreement with the results in the literature to validate the ability of the present meshless method to handle the 2 + 1-dimensional sine-Gordon equation related problems.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C., Solitons and Nonlinear Wave Equations (1982), London, UK: Academic, London, UK · Zbl 0496.35001
[2] Barone, A.; Esposito, F.; Magee, C. J.; Scott, A. C., Theory and applications of the sine-Gordon equation, La Rivista del Nuovo Cimento, 1, 2, 227-267 (1971) · doi:10.1007/bf02820622
[3] Wazwaz, A. M., Partial Differential Equations and Solitary Waves Theory (2009), Berlin, Germany: Springer, Berlin, Germany · Zbl 1175.35001
[4] Cheng, R. J.; Liew, K. M., Analyzing two-dimensional sine-Gordon equation with the mesh-free reproducing kernel particle Ritz method, Computer Methods in Applied Mechanics and Engineering, 245-246, 132-143 (2012) · Zbl 1354.65202 · doi:10.1016/j.cma.2012.07.010
[5] Maitama, S.; Hamza, Y. F., An analytical method for solving nonlinear sine-Gordon equation, Sohag Journal of Mathematics, 7, 1, 5-10 (2020)
[6] Su, L., Numerical solution of two-dimensional nonlinear sine-Gordon equation using localized method of approximate particular solutions, Engineering Analysis with Boundary Elements, 108, 95-107 (2019) · Zbl 1464.65110 · doi:10.1016/j.enganabound.2019.08.018
[7] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Engineering Analysis with Boundary Elements, 50, 412-434 (2015) · Zbl 1403.65082 · doi:10.1016/j.enganabound.2014.09.008
[8] Dehghan, M.; Ghesmati, A., Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Computer Physics Communications, 181, 4, 772-786 (2010) · Zbl 1205.65267 · doi:10.1016/j.cpc.2009.12.010
[9] Wazwaz, A.-M., The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Applied Mathematics and Computation, 167, 2, 1196-1210 (2005) · Zbl 1082.65585 · doi:10.1016/j.amc.2004.08.005
[10] Johnson, S.; Suarez, P.; Biswas, A., New exact solutions for the sine-Gordon equation in 2+1 dimensions, Computational Mathematics and Mathematical Physics, 52, 1, 98-104 (2012) · Zbl 1249.37041 · doi:10.1134/s0965542512010058
[11] Zhong, W.-P.; Belić, M., Special two-soliton solution of the generalized Sine-Gordon equation with a variable coefficient, Applied Mathematics Letters, 38, 122-128 (2014) · Zbl 1314.35074 · doi:10.1016/j.aml.2014.07.015
[12] Gao, M. R.; Chen, H. T., Hybrid solutions of three functions to the (2+1)-dimensional sine-Gordon equation, Acta Physica Sinica, 61, 22 (2012)
[13] Salas, A. H., Exact solutions of coupled sine-Gordon equations, Nonlinear Analysis: Real World Applications, 11, 5, 3930-3935 (2010) · Zbl 1201.35067 · doi:10.1016/j.nonrwa.2010.02.020
[14] Aktosun, T.; Demontis, F.; van der Mee, C., Exact solutions to the sine-Gordon equation, Journal of Mathematical Physics, 51, 12, 123521 (2010) · Zbl 1314.35158 · doi:10.1063/1.3520596
[15] Chen, W.-X.; Lin, J., Some new exact solutions of (1+2)-dimensional sine-Gordon equation, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.35479 · doi:10.1155/2014/645456
[16] Dehghan, M.; Shokri, A., A numerical method for one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions, Numerical Methods for Partial Differential Equations, 24, 2, 687-698 (2008) · Zbl 1135.65380 · doi:10.1002/num.20289
[17] Bratsos, A. G.; Twizell, E. H., A family of parametric finite-difference methods for the solution of the sine-Gordon equation, Applied Mathematics and Computation, 93, 2-3, 117-137 (1998) · Zbl 0943.65102 · doi:10.1016/s0096-3003(97)10110-2
[18] Dehghan, M.; Mirzaei, D., The boundary integral equation approach for numerical solution of the one-dimensional sine-Gordon equation, Numerical Methods for Partial Differential Equations, 24, 6, 1405-1415 (2008) · Zbl 1153.65099 · doi:10.1002/num.20325
[19] Chowdhury, M. S. H.; Hashim, I., Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations, Chaos, Solitons & Fractals, 39, 4, 1928-1935 (2009) · Zbl 1197.65164 · doi:10.1016/j.chaos.2007.06.091
[20] Ray, S. S., A numerical solution of the coupled sine-Gordon equation using the modified decomposition method, Applied Mathematics and Computation, 175, 2, 1046-1054 (2006) · Zbl 1093.65098 · doi:10.1016/j.amc.2005.08.018
[21] Chen, J.; Chen, Z.; Cheng, S., Multilevel augmentation methods for solving the sine-Gordon equation, Journal of Mathematical Analysis and Applications, 375, 2, 706-724 (2011) · Zbl 1213.35035 · doi:10.1016/j.jmaa.2010.10.009
[22] Argyris, J.; Haase, M.; Heinrich, J. C., Finite element approximation to two-dimensional sine-Gordon solitons, Computer Methods in Applied Mechanics and Engineering, 86, 1, 1-26 (1991) · Zbl 0762.65073 · doi:10.1016/0045-7825(91)90136-t
[23] Djidjeli, K.; Price, W. G.; Twizell, E. H., Numerical solutions of a damped Sine-Gordon equation in two space variables, Journal of Engineering Mathematics, 29, 4, 347-369 (1995) · Zbl 0841.65083 · doi:10.1007/bf00042761
[24] Sheng, Q.; Khaliq, A. Q. M.; Voss, D. A., Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme, Mathematics and Computers in Simulation, 68, 4, 355-373 (2005) · Zbl 1073.65095 · doi:10.1016/j.matcom.2005.02.017
[25] Bratsos, A. G., The solution of the two-dimensional sine-Gordon equation using the method of lines, Journal of Computational and Applied Mathematics, 206, 1, 251-277 (2007) · Zbl 1117.65126 · doi:10.1016/j.cam.2006.07.002
[26] Mirzaei, D.; Dehghan, M., Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation, Journal of Computational and Applied Mathematics, 233, 10, 2737-2754 (2010) · Zbl 1183.65113 · doi:10.1016/j.cam.2009.11.022
[27] Li, X., Meshless numerical analysis of a class of nonlinear generalized Klein-Gordon equations with a well-posed moving least squares approximation, Applied Mathematical Modelling, 48, 153-182 (2017) · Zbl 1480.65265 · doi:10.1016/j.apm.2017.03.063
[28] Beskos, D. E., Boundary element methods in dynamic analysis, Applied Mechanics Reviews, 40, 1, 1-23 (1987) · doi:10.1115/1.3149529
[29] Huang, R.; Zheng, S.; Liu, Z.; Ng, T. Y., Recent advances of the constitutive models of smart materials-hydrogels and shape memory polymers, International Journal of Applied Mechanics, 12, 02, 2050014 (2020) · doi:10.1142/s1758825120500143
[30] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, International Journal for Numerical Methods in Engineering, 37, 2, 229-256 (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[31] Cheng, J., Data analysis of the factors influencing the industrial land leasing in Shanghai based on mathematical models, Mathematical Problems in Engineering, 2020 (2020) · doi:10.1155/2020/9346863
[32] Cheng, J., Analyzing the factors influencing the choice of the government on leasing different types of land uses: evidence from Shanghai of China, Land Use Policy, 90, 104303 (2020) · doi:10.1016/j.landusepol.2019.104303
[33] Cheng, Y. M.; Chen, M. J., A boundary element-free method for linear elasticity, Acta Mechanica Sinica, 35, 2, 181-186 (2003)
[34] Wang, B.; Ma, Y.; Cheng, Y., The improved complex variable element-free Galerkin method for bending problem of thin plate on elastic foundations, International Journal of Applied Mechanics, 11, 10, 1950105 (2019) · doi:10.1142/s1758825119501059
[35] Liu, F.; Cheng, Y., The improved element-free Galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels, International Journal of Applied Mechanics, 10, 4, 1850047 (2018) · doi:10.1142/s1758825118500473
[36] Wu, Q.; Peng, P. P.; Cheng, Y. M., The interpolating element-free Galerkin method for elastic large deformation problems, Science China Technological Sciences, 63 (2020)
[37] Wu, Q.; Liu, F. B.; Cheng, Y. M., The interpolating element-free Galerkin method for three-dimensional elastoplasticity problems, Engineering Analysis with Boundary Elements, 115, 156-167 (2020) · Zbl 1464.74218 · doi:10.1016/j.enganabound.2020.03.009
[38] Liu, D.; Cheng, Y. M., The interpolating element-free Galerkin (IEFG) method for three-dimensional potential problems, Engineering Analysis with Boundary Elements, 108, 115-123 (2019) · Zbl 1464.65178 · doi:10.1016/j.enganabound.2019.08.021
[39] Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M., The dimension splitting element-free Galerkin method for 3D transient heat conduction problems, Science China Physics, Mechanics & Astronomy, 62, 4 (2019) · doi:10.1007/s11433-018-9299-8
[40] Ma, L.; Meng, Z.; Chai, J.; Cheng, Y., Analyzing 3D advection-diffusion problems by using the dimension splitting element-free Galerkin method, Engineering Analysis with Boundary Elements, 111, 167-177 (2020) · Zbl 1464.65122 · doi:10.1016/j.enganabound.2019.11.005
[41] Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M., The dimension split element-free Galerkin method for three-dimensional potential problems, Acta Mechanica Sinica, 34, 3, 462-474 (2018) · Zbl 1404.65275 · doi:10.1007/s10409-017-0747-7
[42] Cheng, H.; Peng, M.; Cheng, Y.; Meng, Z., The hybrid complex variable element-free Galerkin method for 3D elasticity problems, Engineering Structures, 219, 110835 (2020) · doi:10.1016/j.engstruct.2020.110835
[43] Peng, P. P.; Wu, Q.; Cheng, Y. M., The dimension splitting reproducing kernel particle method for three‐dimensional potential problems, International Journal for Numerical Methods in Engineering, 121, 1, 146-164 (2020) · Zbl 1537.65171 · doi:10.1002/nme.6203
[44] Zhu, P.; Zhang, L. W.; Liew, K. M., Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation, Composite Structures, 107, 298-314 (2014) · doi:10.1016/j.compstruct.2013.08.001
[45] Zhu, P.; Liew, K. M., A local Kriging meshless method for free vibration analysis of functionally graded circular plates in thermal environments, Procedia Engineering, 31, 1089-1094 (2012) · doi:10.1016/j.proeng.2012.01.1147
[46] Zhu, P.; Liew, K. M., Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method, Composite Structures, 93, 11, 2925-2944 (2011) · doi:10.1016/j.compstruct.2011.05.011
[47] Zhang, L. W.; Zhu, P.; Liew, K. M., Thermal buckling of functionally graded plates using a local Kriging meshless method, Composite Structures, 108, 472-492 (2014) · doi:10.1016/j.compstruct.2013.09.043
[48] Olea, R., Geostatistics for Engineers and Earth Scientists (1999), Boston, MA, USA: Kluwer Academic, Boston, MA, USA
[49] Liu, Z.; Wei, G.; Wang, Z., The radial basis reproducing kernel particle method for geometrically nonlinear problem of functionally graded materials, Applied Mathematical Modelling, 85, 244-272 (2020) · Zbl 1481.74124 · doi:10.1016/j.apm.2020.04.005
[50] Liu, Z.; Wei, G.; Wang, Z.; Qiao, J., The meshfree analysis of geometrically nonlinear problem based on radial basis reproducing kernel particle method, International Journal of Applied Mechanics, 12, 4, 2050044 (2020) · doi:10.1142/s1758825120500441
[51] Christiansen, P. L.; Lomdahl, P. S., Numerical study of 2+1 dimensional Sine-Gordon solitons, Physica D: Nonlinear Phenomena, 2, 3, 482-494 (1981) · Zbl 1194.65122 · doi:10.1016/0167-2789(81)90023-3
[52] Bratsos, A. G., An explicit numerical scheme for the Sine-Gordon equation in 2+1 dimensions, Applied Numerical Analysis & Computational Mathematics, 2, 2, 189-211 (2005) · Zbl 1075.65111 · doi:10.1002/anac.200410035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.