×

Genus one Belyi maps by quadratic correspondences. (English) Zbl 1458.11104

Although initially introduced to decipher the absolute Galois group of the field of rational numbers, dessins d’enfants (or equivalently bipartite ribbon graphs) have become a topic of interest in the context of both physics (e.g., Seiberg-Witten curves, [S. K. Ashok et al., Commun. Number Theory Phys. 1, No. 2, 237–305 (2007; Zbl 1230.14050)]) and mathematics (e.g., quivers, [Y.-H. He, “Calabi-Yau varieties: from quiver representations to dessins d’enfants”, Preprint, arXiv:1611.09398]). The category of bipartite ribbon graphs is equivalent to the category of Belyi pairs \((X,\beta)\) where \(X\) is an algebraic curve defined over a number field and \(\beta\) is a map from \(X\) to the projective line which is ramified at most over three points. From the viewpoint of both physics and mathematics, the explicit computation of Belyi maps is indispensable. Explicit computations become more difficult as the genus of the curve \(X\) grows.
In the article under review, given a rational function \(\varphi\), the authors consider the correspondence : \(Q(\varphi) = \frac{1}{2} + \frac{\sqrt{1-\varphi}}{2}\) which is relevant in the context of Painlevé VI equations. It turns out that these functions give rise the Belyi maps on elliptic curves, as exemplified in the article.

MSC:

11G32 Arithmetic aspects of dessins d’enfants, Belyĭ theory
14H52 Elliptic curves
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Citations:

Zbl 1230.14050

References:

[1] N. M. Adrianov, N. Y. Amburg, V. A. Dremov, Y. A. Levitskaya, E. M. Kreines, Y. Y. Kochetkov, V. F. Nasretdinova and G. B. Shabat, Catalog of dessins dEnfants with \(\leq4\) edges, arXiv:0710.2658v1 [math.AG]. · Zbl 1203.14037
[2] Ashok, S. K., Cachazo, F. and Dell’Aquila, E., Children’s drawings from Seiberg-Witten curves, Commun. Numer. Theor. Phys.1 (2007) 237. https://doi.org/10.4310/CNTP.2007.v1.n2.a1[hep-th/0611082]. · Zbl 1230.14050
[3] G. Belyǐ, (Trans. N. Koblitz), Galois extensions of a maximal cyclotomic field, Math. USSR Izv.14(2) (1980) 247-256. · Zbl 0429.12004
[4] Boalch, P., From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3)90 (2005) 167-208. · Zbl 1070.34123
[5] Boalch, P., The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math.596 (2006) 183-214. · Zbl 1112.34072
[6] P. Clarkson, Painlevé Transcendentals, Chapter 32 of the NIST Digital Library of Mathematical Functions (2016). Website http://dlmf.nist.gov.
[7] Davey, J., Hanany, A. and Pasukonis, J., On the Classification of Brane Tilings, J. High Energy Phys.1001 (2010) 078. https://doi.org/10.1007/JHEP01(2010)078, arXiv:0909.2868[hep-th]. · Zbl 1269.81120
[8] Feng, B., Hanany, A. and He, Y. H., D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B595 (2001) 165. https://doi.org/10.1016/S0550-3213(00)00699-4[hep-th/0003085]. · Zbl 0972.81138
[9] Feng, B., He, Y. H., Kennaway, K. D. and Vafa, C., Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys.12(3) (2008) 489. https://doi.org/10.4310/ATMP.2008.v12.n3.a2[hep-th/0511287]. · Zbl 1144.81501
[10] Franco, S., Hanany, A., Kennaway, K. D., Vegh, D. and Wecht, B., Brane dimers and quiver gauge theories, J. High Energy Phys.0601 (2006) 096. https://doi.org/10.1088/1126-6708/2006/01/096[hep-th/0504110].
[11] Franco, S., Hanany, A., Martelli, D., Sparks, J., Vegh, D. and Wecht, B., Gauge theories from toric geometry and brane tilings, J. High Energy Phys.0601 (2006) 128. https://doi.org/10.1088/1126-6708/2006/01/128[hep-th/0505211].
[12] S. Franco, Y. H. He, C. Sun and Y. Xiao, A comprehensive survey of Brane tilings. arXiv:1702.03958 [hep-th]. · Zbl 1375.81197
[13] M. Gabella, P. Longhi, C. Y. Park and M. Yamazaki, BPS graphs: From spectral networks to BPS quivers. arXiv:1704.04204 [hep-th]. · Zbl 1380.81399
[14] Girondo, E. and González-Diez, G., Introduction to Compact Riemann Surfaces and Dessins d’enfants, Vol. 79 (CUP, 2012). · Zbl 1253.30001
[15] Y. H. He, Calabi-Yau varieties: From quiver representations to Dessins d’Enfants. arXiv:1611.09398 [math.AG].
[16] Hanany, A., He, Y. H., Jejjala, V., Pasukonis, J., Ramgoolam, S. and Rodriguez-Gomez, D., The beta ansatz: A tale of two complex structures, J. High Energy Phys.1106, 056 (2011) https://doi.org/10.1007/JHEP06(2011)056 [arXiv:1104.5490[hep-th]]. · Zbl 1298.81293
[17] A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, hep-th/0503149.
[18] He, Y. H. and Read, J., Dessins denfants in \(\mathcal{N}=2\) generalised quiver theories, J. High Energy Phys.1508 (2015) 085, arXiv:1503.06418[hep-th]. · Zbl 1388.81830
[19] van Hoeij, M. and Vidunas, R., Belyi functions for hyperbolic hypergeometric-to-Heun transformations, J. Algebra441 (2015) 609-659, arXiv:1212.3803[math.AG]. · Zbl 1332.33036
[20] M. van Hoeij and R. Vidunas, Algorithms and differential relations for Belyi functions, arXiv:1305.7218. · Zbl 1332.33036
[21] Jimbo, M. and Miwa, T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II, Physica2D (1981) 407-448. · Zbl 1194.34166
[22] G. A. Jones, Regular dessins with a given automorphism group, arXiv:1309.5219 [math.GR]. · Zbl 1346.14091
[23] Jones, G. A. and Wolfart, J., Dessins d’Enfants on Riemann Surfaces (Springer, 2016). · Zbl 1401.14002
[24] Jejjala, V., Ramgoolam, S. and Rodriguez-Gomez, D., Toric CFTs, Permutation Triples and Belyi Pairs, J. High Energy Phys.1103 (2011) 065. https://doi.org/10.1007/JHEP03(2011)065, arXiv:1012.2351[hep-th]. · Zbl 1301.81141
[25] Kitaev, A. V., Grothendieck’s dessins d’enfants, their deformations and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations, Algebra Anal.17 (2005) 224-273.
[26] M. Klug, M. Musty, S. Schiavone and J. Voight, Numerical calculation of three-point branched covers of the projective line, arXiv:1311.2081 [math.NT]. · Zbl 1351.30027
[27] Lando, S. and Zvonkin, A., Graphs on Surfaces and Their Applications (Springer, 2004). · Zbl 1040.05001
[28] Lisovyy, O. and Tykhyy, Y., Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys.85 (2014). · Zbl 1307.34135
[29] Okamoto, K., Studies on the Painlevé Equations. I. Sixth Painlevé equation \(P_{V I}\), Ann. Mat. Pura Appl.146 (1987) 337-381. · Zbl 0637.34019
[30] Schneps, L., The Grothendieck Theory of Dessins d’Enfants, (CUP, 1994). · Zbl 0798.00001
[31] J. Sijsling and J. Voight, On computing Belyi maps, arXiv:1311.2529 [math.NT]. · Zbl 1364.11127
[32] Verschelde, Jan, PHCpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Softw.25(2) (1999) 251-276, http://www.math.uic.edu/jan/PHCpack/phcpack.html. · Zbl 0961.65047
[33] Vidunas, R. and Filipuk, G., A classification of coverings yielding Heun-to-hypergeometric reductions, Osaka J. Math.51 (2014) 867-903, arXiv:1204.2730. · Zbl 1309.33024
[34] Vidunas, R. and He, Y. H., Composite genus one Belyi maps, Indagat. Math.29 (2018) 916-947, arXiv:1610.08075[math.AG]. · Zbl 1447.14006
[35] Vidunas, R. and Kitaev, A., Computation of highly ramified coverings, Math. Comput.78 (2009) 2371-2395, arXiv:0705.3134. · Zbl 1226.14043
[36] Vidunas, R. and Kitaev, A. V., Quadratic transformations of the sixth Painlevé equation, Math. Nachr.280 (2007) 1834-1855. · Zbl 1137.34041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.