×

Parallel kinetic scheme for transport equations in complex toroidal geometry. (English) Zbl 1508.82048

A new numerical method (based on a kinetic formulation resembling the Lattice-Boltzmann approach) for solving nonhomogeneous conservative transport equations in toroidal geometries (as is in tokamaks) is proposed. This permits to handle unstructured meshes of the poloidal plane, and allow a parallelization. The algorithm has been tested in a few model problems including the diocotron case (the slipping stream plasma instability).

MSC:

82D10 Statistical mechanics of plasmas
76M28 Particle methods and lattice-gas methods
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
82D75 Nuclear reactor theory; neutron transport
82C40 Kinetic theory of gases in time-dependent statistical mechanics
65Y05 Parallel numerical computation
65D30 Numerical integration
35B06 Symmetries, invariants, etc. in context of PDEs
35Q49 Transport equations
35Q82 PDEs in connection with statistical mechanics

Software:

GYSELA; Tokamesh

References:

[1] Aregba-Driollet, D.; Natalini, R., Discrete kinetic schemes for multidimensional systems of conservation laws, SIAM J. Numer. Anal., 37, 6, 1973-2004 (2000) · Zbl 0964.65096 · doi:10.1137/S0036142998343075
[2] Badwaik, J.; Boileau, M.; Coulette, D.; Franck, E.; Helluy, P.; Klingenberg, C.; Mendoza, L.; Oberlin, H., Task-based parallelization of an implicit kinetic scheme, ESAIM, Proc. Surv., 63, 60-77 (2018) · Zbl 1408.35143 · doi:10.1051/proc/201863060
[3] Besse, N.; Mehrenberger, M., Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system, Math. Comput., 77, 261, 93-123 (2008) · Zbl 1131.65080 · doi:10.1090/S0025-5718-07-01912-6
[4] Bouchut, F., Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys., 95, 1-2, 113-170 (1999) · Zbl 0957.82028 · doi:10.1023/A:1004525427365
[5] Bramas, B.; Ketterlin, A., Improving parallel executions by increasing task granularity in task-based runtime systems using acyclic DAG clustering, PeerJ Computer Science, 6 (2020) · doi:10.7717/peerj-cs.247
[6] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 1, 329-364 (1998) · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[7] Coulette, D.; Franck, E.; Helluy, P.; Mehrenberger, M.; Navoret, L., High-order implicit palindromic Discontinuous Galerkin method for kinetic-relaxation approximation, Comput. Fluids (2019) · Zbl 1496.76084 · doi:10.1016/j.compfluid.2019.06.007
[8] Courtès, C.; Coulette, D.; Franck, E.; Navoret, L., Vectorial kinetic relaxation model with central velocity. application to implicit relaxations schemes, Commun. Comput. Phys., 27, 4 (2020) · Zbl 1497.76061
[9] Crouseilles, N.; Glanc, P.; Hirstoaga, S. A.; Madaule, E.; Mehrenberger, M.; Pétri, J., A new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids, from diocotron instability to ITG turbulence, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., 68, 9 (2014) · doi:10.1140/epjd/e2014-50180-9
[10] Dellar, P. J., An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl., 65, 2, 129-141 (2013) · Zbl 1268.76044 · doi:10.1016/j.camwa.2011.08.047
[11] Dimarco, G.; Loubère, R., Towards an ultra efficient kinetic scheme. Part I: Basics on the BGK equation, J. Comput. Phys., 255, 680-698 (2013) · Zbl 1349.76674 · doi:10.1016/j.jcp.2012.10.058
[12] Dimarco, G.; Loubère, R.; Narski, J.; Rey, T., An efficient numerical method for solving the Boltzmann equation in multidimensions, J. Comput. Phys., 353, 46-81 (2018) · Zbl 1380.76088 · doi:10.1016/j.jcp.2017.10.010
[13] Drui, F.; Franck, E.; Helluy, P.; Navoret, L., An analysis of over-relaxation in a kinetic approximation of systems of conservation laws, C. R. Méc. Acad. Sci. Paris, 347, 3, 259-269 (2019)
[14] Dubois, F., Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes, Asymptotic Anal., 127, 4, 297-337 (2022) · Zbl 1509.35175 · doi:10.3233/ASY-211692
[15] Dubois, F.; Février, T.; Graille, B., Lattice Boltzmann schemes with relative velocities, Commun. Comput. Phys., 17, 4, 1088-1112 (2015) · Zbl 1373.76236 · doi:10.4208/cicp.2014.m394
[16] Dubois, F.; Lallemand, P., Towards higher order lattice Boltzmann schemes, J. Stat. Mech. Theory Exp., 2009, 6 (2009) · Zbl 1459.76097 · doi:10.1088/1742-5468/2009/06/P06006
[17] Graille, B., Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme as a relaxation method, J. Comput. Phys., 266, 74-88 (2014) · Zbl 1310.76145 · doi:10.1016/j.jcp.2014.02.017
[18] Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, C.; Esteve, D.; Garbet, X.; Ghendrih, P., A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun., 207, 35-68 (2016) · Zbl 1375.76127 · doi:10.1016/j.cpc.2016.05.007
[19] Guillard, H.; Lakhlili, J.; Loseille, A.; Loyer, A.; Nkonga, B.; Ratnani, .; Elarif, A., Tokamesh: A software for mesh generation in Tokamaks (2018)
[20] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications (2007), Springer
[21] Latu, G.; Mehrenberger, M.; Güçlü, Y.; Ottaviani, M.; Sonnendrücker, E., Field-aligned interpolation for semi-Lagrangian gyrokinetic simulations, J. Sci. Comput., 74, 3, 1601-1650 (2018) · Zbl 1412.65081 · doi:10.1007/s10915-017-0509-5
[22] Madaule, E.; Hirstoaga, S. A.; Mehrenberger, M.; Pétri, J., Semi-Lagrangian simulations of the diocotron instability (2013)
[23] Qian, Y. H.; d’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Eur. Phys. Lett., 17, 6, 479 (1992) · Zbl 1116.76419 · doi:10.1209/0295-5075/17/6/001
[24] Sonnendrücker, E.; Roche, J.; Bertrand, P.; Ghizzo, A., The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149, 2, 201-220 (1999) · Zbl 0934.76073 · doi:10.1006/jcph.1998.6148
[25] Storelli, A.; Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Görler, T.; Singh, R.; Morel, P.; Grandgirard, V.; Ghendrih, P.; Tore Supra team, Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations, Phys. Plasmas, 22, 6, 062508 (2015) · doi:10.1063/1.4922845
[26] Zhang, R.; Fan, H.; Chen, H., A lattice Boltzmann approach for solving scalar transport equations, Philos. Trans. R. Soc. Lond., Ser. A, 369, 1944, 2264-2273 (2011) · Zbl 1223.76097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.