×

Dynamical low-rank integrator for the linear Boltzmann equation: error analysis in the diffusion limit. (English) Zbl 1507.65206

Summary: Dynamical low-rank algorithms are a class of numerical methods that compute low-rank approximations of dynamical systems. This is accomplished by projecting the dynamics onto a low-dimensional manifold and writing the solution directly in terms of the low-rank factors. The approach has been successfully applied to many types of differential equations. Recently, efficient dynamical low-rank algorithms have been proposed in [L. Einkemmer, SIAM J. Sci. Comput. 41, No. 5, A2795–A2814 (2019; Zbl 1421.76169)], [L. Einkemmer and C. Lubich, SIAM J. Sci. Comput. 40, No. 5, B1330–B1360 (2018; Zbl 1408.35187)] to treat kinetic equations, including the Vlasov-Poisson and the Boltzmann equation. There it was demonstrated that the methods are able to capture the low-rank structure of the solution and significantly reduce numerical cost, while often maintaining high accuracy. However, no numerical analysis is currently available. In this paper, we perform an error analysis for a dynamical low-rank algorithm applied to the multiscale linear Boltzmann equation (a classical model in kinetic theory) to showcase the validity of the application of dynamical low-rank algorithms to kinetic theory. The equation, in its parabolic regime, is known to be rank 1 theoretically, and we will prove that the scheme can dynamically and automatically capture this low-rank structure. This work thus serves as the first mathematical error analysis for a dynamical low-rank approximation applied to a kinetic problem.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35L02 First-order hyperbolic equations
65F55 Numerical methods for low-rank matrix approximation; matrix compression
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
80A21 Radiative heat transfer

Software:

GYSELA; sldg; Vador

References:

[1] A. Arnold and T. Jahnke, On the approximation of high-dimensional differential equations in the hierarchical Tucker format, BIT, 54 (2014), pp. 305-341. · Zbl 1308.65113
[2] C. Bardos, R. Santos, and R. Sentis, Diffusion approximation and computation of the critical size, Trans. Amer. Math. Soc., 284 (1984), pp. 617-649. · Zbl 0508.60067
[3] M. Bennoune, M. Lemou, and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys., 227 (2008), pp. 3781-3803. · Zbl 1317.76058
[4] D. Conte and C. Lubich, An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics, ESAIM Math. Model. Numer. Anal., 44 (2010), pp. 759-780. · Zbl 1192.81125
[5] N. Crouseilles, M. Mehrenberger, and F. Vecil, Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson, in ESAIM Proc. 32 (2011), pp. 211-230. · Zbl 1302.76099
[6] W. Dahmen, R. DeVore, L. Grasedyck, and E. Süli, Tensor-sparsity of solutions to high-dimensional elliptic partial differential equations, Found. Comput. Math., 16 (2016), pp. 813-874. · Zbl 1365.65243
[7] P. Degond, F. Deluzet, L. Navoret, A. Sun, and M. Vignal, Asymptotic-preserving particle-in-cell method for the Vlasov-Poisson system near quasineutrality, J. Comput. Phys., 229 (2010), pp. 5630-5652. · Zbl 1346.82034
[8] P. Degond, S. Jin, and J. Liu, Mach-number uniform asymptotic-preserving gauge schemes for compressible flows, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007). · Zbl 1210.76135
[9] G. Dimarco and L. Pareschi, Exponential Runge-Kutta methods for stiff kinetic equations, SIAM J. Numer. Anal., 49 (2011), pp. 2057-2077. · Zbl 1298.76150
[10] G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), pp. 369-520. · Zbl 1398.65260
[11] L. Einkemmer, A Low-Rank Algorithm for Weakly Compressible Flow, arXiv:1804.04561, 2018. · Zbl 1421.76169
[12] L. Einkemmer, High performance computing aspects of a dimension independent semi-Lagrangian discontinuous Galerkin code, Comput. Phys. Commun., 202 (2016), pp. 326-336. · Zbl 1348.35004
[13] L. Einkemmer, A performance comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions, J. Comput. Phys., 376 (2019), pp. 937-951. · Zbl 1416.65347
[14] L. Einkemmer and C. Lubich, A low-rank projector-splitting integrator for the Vlasov-Poisson equation, SIAM J. Sci. Comput., 40 (2018), pp. B1330-B1360. · Zbl 1408.35187
[15] L. Einkemmer and C. Lubich, A quasi-conservative dynamical low-rank algorithm for the vlasov equation, SIAM J. Sci. Comput., 41 (2019), pp. B1061-B1081. · Zbl 1428.82058
[16] L. Einkemmer, A. Ostermann, and C. Piazzola, A Low-Rank Projector-Splitting Integrator for the Vlasov-Maxwell Equations with Divergence Correction, arXiv:1902.00424, 2019. · Zbl 1453.65357
[17] F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun., 150 (2003), pp. 247-266. · Zbl 1196.82108
[18] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-Pradalier, C. Ehrlacher, D. Esteve, X. Garbet, P. Ghendrih, G. Latu, M. Mehrenberger, C. Norscini, C. Passeron, F. Rozar, Y. Sarazin, E. Sonnendrücker, A. Strugarek, and D. Zarzoso, A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun., 207 (2016), pp. 35-68. · Zbl 1375.76127
[19] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, Unifying time evolution and optimization with matrix product states, Phys. Rev. B, 94 (2016), p. 165116.
[20] J. Hu, S. Jin, and Q. Li, Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations, in Handbook of Numerical Methods for Hyperbolic Problems, R. Abgrall and C. Shu, eds., Handb. Numer. Anal. 18, Elsevier, Amsterdam, 2017, pp. 103-129. · Zbl 1366.82029
[21] S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), pp. 441-454. · Zbl 0947.82008
[22] S. Jin and C. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., 126 (1996), pp. 449-467. · Zbl 0860.65089
[23] S. Jin and L. Pareschi, Asymptotic-preserving (AP) schemes for multiscale kinetic equations: A unified approach, in Hyperbolic Problems: Theory, Numerics, Applications, H. Freistühler and G. Warnecke, eds., Birkhäuser Basel, Basel, 2001, pp. 573-582.
[24] S. Jin, L. Pareschi, and G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations, SIAM J. Numer. Anal., 38 (2000), pp. 913-936. · Zbl 0976.65091
[25] E. Kieri, C. Lubich, and H. Walach, Discretized dynamical low-rank approximation in the presence of small singular values, SIAM J. Numer. Anal., 54 (2016), pp. 1020-1038. · Zbl 1336.65119
[26] O. Koch and C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 434-454. · Zbl 1145.65031
[27] O. Koch and C. Lubich, Dynamical tensor approximation, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2360-2375. · Zbl 1214.15017
[28] K. Kormann, A semi-Lagrangian Vlasov solver in tensor train format, SIAM J. Sci. Comput., 37 (2015), pp. 613-632. · Zbl 1325.76132
[29] E. Larsen, J. Morel, and W. Miller, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes, J. Comput. Phys., 69 (1987), pp. 283-324. · Zbl 0627.65146
[30] M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31 (2008), pp. 334-368. · Zbl 1187.82110
[31] Q. Li, J. Lu, and W. Sun, A convergent method for linear half-space kinetic equations, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1583-1615. · Zbl 1380.35006
[32] Q. Li, J. Lu, and W. Sun, Half-space kinetic equations with general boundary conditions, Math. Comp., 86 (2017), pp. 1269-1301. · Zbl 1360.35131
[33] Q. Li, J. Lu, and W. Sun, Validity and regularization of classical half-space equations, J. Stat. Phys., 166 (2017), pp. 398-433. · Zbl 1367.35176
[34] Q. Li and L. Pareschi, Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy, J. Comput. Phys., 259 (2014), pp. 402-420. · Zbl 1349.76707
[35] Q. Li and L. Wang, Implicit asymptotic preserving method for linear transport equations, Commun. Comput. Phys., 22 (2017), pp. 157-181. · Zbl 1488.65262
[36] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, European Mathematical Society, Zürich, 2008. · Zbl 1160.81001
[37] C. Lubich, Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics, Appl. Math. Res. Express AMREX, 2015 (2015), pp. 311-328. · Zbl 1331.35290
[38] C. Lubich and I. Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT, 54 (2014), pp. 171-188. · Zbl 1314.65095
[39] C. Lubich, I. V. Oseledets, and B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal., 53 (2015), pp. 917-941. · Zbl 1312.65114
[40] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, Dynamical approximation by hierarchical Tucker and tensor-train tensors, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 470-494. · Zbl 1391.15087
[41] C. Lubich, B. Vandereycken, and H. Walach, Time integration of rank-constrained tucker tensors, SIAM J. Numer. Anal., 56 (2018), pp. 1273-1290. · Zbl 1407.37113
[42] H. Meyer, F. Gatti, and G. A. Worth, Multidimensional Quantum Dynamics, John Wiley & Sons, New York, 2009.
[43] H. Meyer, U. Manthe, and L. S. Cederbaum, The multi-configurational time-dependent Hartree approach, Chem. Phys. Lett., 165 (1990), pp. 73-78.
[44] C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), pp. 29-201. · Zbl 1239.82017
[45] A. Nonnenmacher and C. Lubich, Dynamical low-rank approximation: Applications and numerical experiments, Math. Comput. Simul., 79 (2008), pp. 1346-1357. · Zbl 1162.65335
[46] A. Ostermann, C. Piazzola, and H. Walach, Convergence of a low-rank Lie-Trotter splitting for stiff matrix differential equations, SIAM J. Numer. Anal., 57 (2019), pp. 1947-1966. · Zbl 1420.65072
[47] Z. Peng, Y. Chen, Y. Cheng, and F. Li, A Reduced Basis Method for Radiative Transfer Equation, arXiv/2103.07574, 2021.
[48] N. J. Sircombe and T. D. Arber, VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system, J. Comput. Phys., 228 (2009), pp. 4773-4788. · Zbl 1175.82059
[49] D. Ter Haar, Men of Physics: L.D. Landau, Vol. 2, Elsevier, Amsterdam, 1969.
[50] L. Wu and Y. Guo, Geometric correction for diffusive expansion of steady neutron transport equation, Commun. Math. Phys., 336 (2015), pp. 1473-1553. · Zbl 1318.35128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.