×

Application of high dimensional B-spline interpolation in solving the gyro-kinetic Vlasov equation based on semi-Lagrangian method. (English) Zbl 1488.76114

Summary: The computation efficiency of high dimensional (3D and 4D) B-spline interpolation, constructed by classical tensor product method, is improved greatly by precomputing the B-spline function. This is due to the character of NLT code, i.e. only the linearised characteristics are needed so that the unperturbed orbit as well as values of the B-spline function at interpolation points can be precomputed at the beginning of the simulation. By integrating this fixed point interpolation algorithm into NLT code, the high dimensional gyro-kinetic Vlasov equation can be solved directly without operator splitting method which is applied in conventional semi-Lagrangian codes. In the Rosenbluth-Hinton test, NLT runs a few times faster for Vlasov solver part and converges at about one order larger time step than conventional splitting code.

MSC:

76M99 Basic methods in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
82D10 Statistical mechanics of plasmas

Software:

GYSELA; ORB5
Full Text: DOI

References:

[1] Z. Lin, Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations, Sci-ence 281 (5384) (1998) 1835-1837. doi:10.1126/science.281.5384.1835. · doi:10.1126/science.281.5384.1835
[2] Y. Idomura, S. Tokuda, Y. Kishimoto, Global gyrokinetic simulation of ion temperature gra-dient driven turbulence in plasmas using a canonical Maxwellian distribution, Nuclear Fu-sion 43 (4) (2003) 234-243. doi:10.1088/0029-5515/43/4/303. · doi:10.1088/0029-5515/43/4/303
[3] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T. Tran, B. Mcmillan, O. Sauter, K. Appert, Y. Idomura, L. Villard, A global collisionless PIC code in magnetic coordinates, Computer Physics Communications 177 (5) (2007) 409-425. doi:10.1016/j.cpc.2007.04.006. · doi:10.1016/j.cpc.2007.04.006
[4] F. Jenko, W. Dorland, M. Kotschenreuther, B. N. Rogers, Electron temperature gradient tur-bulence., Physical review letters 85 (26 Pt 1) (2000) 5579-82.
[5] Electron temperature gradient driven turbulence, Physics of Plasmas 7 (5) (2000) 1904. doi:10.1063/1.874014. · doi:10.1063/1.874014
[6] J. Candy, R. Waltz, An Eulerian gyrokinetic-Maxwell solver, Journal of Computational Physics 186 (2) (2003) 545-581. doi:10.1016/S0021-9991(03)00079-2. · Zbl 1072.82554 · doi:10.1016/S0021-9991(03)00079-2
[7] E. Sonnendrücker, J. Roche, P. Bertrand, A. Ghizzo, The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation, Journal of Computational Physics 149 (2) (1999) 201-220. doi:10.1006/jcph.1998.6148. · Zbl 0934.76073 · doi:10.1006/jcph.1998.6148
[8] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Man-fredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, L. Villard, A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation, Journal of Computational Physics 217 (2) (2006) 395-423. doi:10.1016/j.jcp.2006.01.023. · Zbl 1160.76385 · doi:10.1016/j.jcp.2006.01.023
[9] G. Latu, V. Grandgirard, J. Abiteboul, N. Crouseilles, G. Dif-Pradalier, X. Garbet, P. Ghen-drih, M. Mehrenberger, Y. Sarazin, E. Sonnendrücker, Improving conservation properties of a 5D gyrokinetic semi-Lagrangian code, The European Physical Journal D 68 (11) (2014) 345. doi:10.1140/epjd/e2014-50209-1. · Zbl 1375.76127 · doi:10.1140/epjd/e2014-50209-1
[10] C. Cheng, G. Knorr, The integration of the vlasov equation in configuration space, Journal of Computational Physics 22 (3) (1976) 330-351. doi:10.1016/0021-9991(76)90053-X. · doi:10.1016/0021-9991(76)90053-X
[11] J.-M. Qiu, A. Christlieb, A conservative high order semi-Lagrangian WENO method for the Vlasov equation, Journal of Computational Physics 229 (4) (2010) 1130-1149. doi:10.1016/j.jcp.2009.10.016. · Zbl 1188.82069 · doi:10.1016/j.jcp.2009.10.016
[12] N. Crouseilles, T. Respaud, E. Sonnendrcker, A forward semi-Lagrangian method for the nu-merical solution of the Vlasov equation, Computer Physics Communications 180 (10) (2009) 1730-1745. doi:10.1016/j.cpc.2009.04.024. · Zbl 1197.82012 · doi:10.1016/j.cpc.2009.04.024
[13] C. de Boor, a practical guide to splines, Vol. 27, Springer, 2001. · Zbl 0987.65015
[14] S. Wang, Transport formulation of the gyrokinetic turbulence, Physics of Plasmas 19 (6) (2012) 62504. doi:10.1063/1.4729660. · doi:10.1063/1.4729660
[15] S. Wang, Kinetic theory of weak turbulence in plasmas, Physical Review E 87 (6) (2013) 063103. doi:10.1103/PhysRevE.87.063103. · doi:10.1103/PhysRevE.87.063103
[16] S. Wang, Nonlinear scattering term in the gyrokinetic Vlasov equation, Physics of Plasmas 20 (8) (2013) 82312. doi:10.1063/1.4818593. · doi:10.1063/1.4818593
[17] S. Wang, Lie-transform theory of transport in plasma turbulence, Physics of Plasmas 21 (7) (2014) 072312. doi:10.1063/1.4890356. · doi:10.1063/1.4890356
[18] Y. Xu, Z. Dai, S. Wang, Nonlinear gyrokinetic theory based on a new method and com-putation of the guiding-center orbit in tokamaks, Physics of Plasmas 21 (4) (2014) 042505. doi:10.1063/1.4871726. URL http://scitation.aip.org/content/aip/journal/pop/21/4/10.1063/1.4871726 · doi:10.1063/1.4871726
[19] L. Ye, Y. Xu, X. Xiao, Z. Dai, S. Wang, A gyrokinetic continuum code based on the nu-merical Lie transform (NLT) method, Journal of Computational Physics 316 (2016) 180-192. doi:10.1016/j.jcp.2016.03.068. · Zbl 1349.82132 · doi:10.1016/j.jcp.2016.03.068
[20] X. Garbet, Y. Idomura, L. Villard, T. Watanabe, Gyrokinetic simulations of turbulent trans-port, Nuclear Fusion 50 (4) (2010) 043002. URL http://stacks.iop.org/0029-5515/50/i=4/a=043002
[21] L. Ye, W. Guo, X. Xiao, S. Wang, Numerical simulation of geodesic acoustic modes in a multi-ion system, Physics of Plasmas 20 (7) (2013) 072501. doi:10.1063/1.4812593. · doi:10.1063/1.4812593
[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 2nd Edition, Cambridge university press, London, 1986. · Zbl 0587.65003
[23] G. Strang, On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis 5 (3) (1968) 506-517. · Zbl 0184.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.