×

Multi-species collisions for delta-f gyrokinetic simulations: implementation and verification with GENE. (English) Zbl 1523.82007

Summary: A multi-species linearized collision operator based on the model developed by Sugama et al. has been implemented in the nonlinear gyrokinetic code, GENE. Such a model conserves particles, momentum, and energy to machine precision, and is shown to have negative definite free energy dissipation characteristics, satisfying Boltzmann’s H-theorem, including for realistic mass ratio. Finite Larmor Radius (FLR) effects have also been implemented into the local version of the code. For the global version of the code, the collision operator has been developed to allow for block-structured velocity space grids, allowing for computationally tractable collisional global simulations. The validity of the collision operator has been demonstrated by relaxation and conservation tests, as well as appropriate benchmarks. The newly implemented operator shall be used in future simulations to study magnetically confined fusion plasma turbulence and transport in more extreme regions with higher collisionality.

MSC:

82D10 Statistical mechanics of plasmas
82-10 Mathematical modeling or simulation for problems pertaining to statistical mechanics
76F99 Turbulence
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

SLEPc
Full Text: DOI

References:

[1] Jenko, F.; Dorland, W.; Kotschenreuther, M.; Rogers, B. N., Phys. Plasmas, 7, 1904 (2000)
[2] Goerler, T.; Lapillonne, X.; Brunner, S.; Dannert, T.; Jenko, F.; Merz, F.; Told, D., J. Comput. Phys., 230, 7053 (2011) · Zbl 1408.76592
[3] Sugama, H.; Watanabe, T.-H.; Nunami, M., Phys. Plasmas, 16, Article 112503 pp. (2009)
[4] Madsen, J., Phys. Rev. E, 87, Article 011101 pp. (2013)
[5] Li, B.; Ernst, D. R., Phys. Rev. Lett., 106, Article 195002 pp. (2011)
[6] Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrucker, E.; Strugarek, A.; Zarzoso, D., Comput. Phys. Comm., 207, 35-68 (2016) · Zbl 1375.76127
[7] Abel, I. G.; Barnes, M.; Cowley, S. C.; Dorland, W.; Schekochihin, A. A., Phys. Plasmas, 15, Article 122509 pp. (2008)
[8] Hinton, F. L.; Hazeltine, R. D., Rev. Modern Phys., 48, 239-308 (1976)
[9] Hirshman, S. P.; Sigmar, D. J., Phys. Fluids, 19, 1532-1540 (1976)
[10] Hager, R.; Yoon, E. S.; Ku, S.; D’Azevedo, E. F.; Worley, P. H.; Chang, C. S., J. Comput. Phys., 315, 644-660 (2016) · Zbl 1349.82145
[11] Estève, D.; Garbet, X.; Sarazin, Y.; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Ghendrih, P.; Latu, G.; Norscini, C., Phys. Plasmas, 22, Article 122506 pp. (2015)
[12] Garbet, X.; Sarazin, Y.; Grandgirard, V.; Asahi, Y.; Bouzat, N.; Caschera, E.; Dif-Pradalier, G.; Ehrlacher, C.; Ghendrih, P.; Gillot, C.; Latu, G.; Passeron, C., Comput. Phys. Comm., 234, 1-13 (2019) · Zbl 07682588
[13] Dorf, M.; Cohen, R. H.; Compton, J. C.; Dorr, M.; Rognlien, T. D.; Angus, J.; Krasheninnikov, S.; Colella, P.; Martin, D.; McCorquodale, P., Contrib. Plasma Phys., 52, 518-522 (2012)
[14] Dorf, M.; Cohen, R.; Dorr, M.; Hittinger, J.; Rognlien, T. D., Contrib. Plasma Phys., 54, 517-523 (2014)
[15] Manas, P.; Camenen, Y.; Benkadda, S.; Hornsby, W. A.; Peeters, A. G., Phys. Plasmas, 22, Article 062302 pp. (2015)
[16] Barnes, M.; Abel, I. G.; Dorland, W.; Ernst, D. R.; Hammett, G. W.; Ricci, P.; Rogers, B. N.; Schekochihin, A. A.; Tatsuno, T., Phys. Plasmas, 16, Article 072107 pp. (2009)
[17] Vernay, T.; Brunner, S.; Villard, L.; Mcmillan, B.; Jolliet, S.; Tran, T. M.; Bottino, A.; Graves, J. P., Phys. Plasmas, 19, Article 042301 pp. (2012)
[18] Nakata, M.; Nunami, M.; Watanabe, T.-H.; Sugama, H., Comput. Phys. Comm., 197, 61-72 (2015) · Zbl 1351.82106
[19] Candy, J.; Belli, E.; Bravenec, R., J. Comput. Phys., 324, 73-93 (2016) · Zbl 1360.82087
[20] Dimits, A. M.; Banks, J. W.; Berger, R. L.; Brunner, S.; Chapman, T.; Copeland, D.; Ghosh, D.; Arrighi, W. J.; Hittinger, J.; Joseph, I., IEEE Trans. Plasma Sci., 47, 2074-2080 (2019)
[21] Jarema, D.; Bungartz, H. J.; Görler, T.; Jenko, F.; Neckel, T.; Told, D., Comput. Phys. Comm., 215, 49-62 (2017)
[22] Jarema, D.; Bungartz, H. J.; Görler, T.; Jenko, F.; Neckel, T.; Told, D., Comput. Phys. Comm., 198, 105-117 (2016)
[23] Doerk, H., Gyrokinetic Simulation of Microtearing Turbulence (2012), Universitaet Ulm, (Ph.D. thesis)
[24] Pan, Q.; Ernst, D., Phys. Rev. E, 99, Article 023201 pp. (2019)
[25] Merz, F., Gyrokinetic Simulation of Multimode Plasma Turbulence (2008), Westfaelische Wilhelms-Universitaet Muenster, (Ph.D. thesis)
[26] Burby, J. W.; Brizard, A. J.; Qin, H., Phys. Plasmas, 22, Article 100707 pp. (2015)
[27] Hirvijoki, E.; Adams, M. F., Phys. Plasmas, 24, Article 032121 pp. (2017)
[28] Hirvijoki, E.; Brizard, A. J.; Pfefferlé, D., J. Plasma Phys., 83, 1 (2017)
[29] Belli, E. A.; Candy, J., Plasma Phys. Control. Fusion, 54, Article 015015 pp. (2012)
[30] Belli, E. A.; Candy, J., Plasma Phys. Control. Fusion, 59, Article 045005 pp. (2017)
[31] Baón Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Görler, T.; Jenko, F., Phys. Plasmas, 24, Article 092303 pp. (2011)
[32] Doerk, H.; Jenko, F., Comput. Phys. Comm., 185, 1938-1946 (2014) · Zbl 1351.82006
[33] Hernandez, V.; Roman, J. E.; Vidal, V., ACM Trans. Math. Software, 31, 351-362 (2005) · Zbl 1136.65315
[34] V. Hernandez, J.E. Roman, E. Romero, A. Tomas, V. Vidal, SLEPc home page, http://www.grycap.upv.es/slepc, 2009.
[35] Maeyama, S.; Watanabe, T.-H.; Idomura, Y.; Nakata, M.; Nunami, M., Comput. Phys. Comm., 235, 9-15 (2019) · Zbl 1533.76051
[36] Belli, E. A.; Candy, J., Plasma Phys. Control. Fusion, 50, Article 095010 pp. (2008)
[37] http://www.mcs.anl.gov/petsc/, 2012.
[38] Miller, R.; Chu, M.; Greene, J.; Lin-Liu, Y.; Waltz, R., Phys. Plasmas, 5, 973 (1998)
[39] Candy, J.; Holland, C.; Waltz, R.; Fahey, M.; Belli, E., Phys. Plasmas, 16, Article 060704 pp. (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.