×

A multi-species collisional operator for full-F global gyrokinetics codes: numerical aspects and verification with the GYSELA code. (English) Zbl 07682588

Summary: A linearized multi-species collision operator valid for arbitrary masses and charges has been developed and implemented in the gyrokinetic code GYSELA (Grandgirard et al., 2016) [1]. This operator has all the required properties: it conserves particles, total momentum and energy, fulfills the Boltzmann H theorem and recovers neoclassical results. This operator takes into account both pitch angle scattering and energy diffusion while operating in the \((v_\parallel, \mu)\) phase space. Derivatives with respect to the magnetic moment are treated using a projection on a set of orthogonal polynomials. The numerical aspects of the implementation are detailed and a set of physical benchmarks allows a verification of the properties of the operator.

MSC:

81-XX Quantum theory
76-XX Fluid mechanics

Software:

GYSELA
Full Text: DOI

References:

[1] Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrcker, E.; Strugarek, A.; Zarzoso, D., Comput. Phys. Comm., 207, 35-68 (2016) · Zbl 1375.76127
[2] Abel, I. G.; Barnes, M.; Cowley, S. C.; Dorland, W.; Schekochihin, A. A., Phys. Plasmas, 15, 12, 122509 (2008)
[3] Sugama, H.; Watanabe, T.-H.; Nunami, M., Phys. Plasmas, 16, 11, 112503 (2009)
[4] Hinton, F. L.; Hazeltine, R. D., Rev. Modern Phys., 48, 239-308 (1976)
[5] Hirshman, S. P.; Sigmar, D. J., Phys. Fluids, 19, 10, 1532-1540 (1976)
[6] T. Vernay, S. Brunner, L. Villard, B. Mcmillan, O. Sauter, S. Jolliet, T.M. Tran, A. Bottino, Global Collisional Gyrokinetic Simulations of ITG Microturbulence Starting from a Neoclassical Equilibrium 260, 2012, 012021.
[7] Görler, T.; Lapillonne, X.; Brunner, S.; Dannert, T.; Jenko, F.; Merz, F.; Told, D., J. Comput. Phys., 230, 7053 (2011) · Zbl 1408.76592
[8] Manas, P.; Camenen, Y.; Benkadda, S.; Hornsby, W. A.; Peeters, A. G., Phys. Plasmas, 22, 6, 062302 (2015)
[9] Barnes, M.; Abel, I. G.; Dorland, W.; Ernst, D. R.; Hammett, G. W.; Ricci, P.; Rogers, B. N.; Schekochihin, A. A.; Tatsuno, T., Phys. Plasmas, 16, 7, 072107 (2009)
[10] Estève, D.; Garbet, X.; Sarazin, Y.; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Ghendrih, P.; Latu, G.; Norscini, C., Phys. Plasmas, 22, 12, 122506 (2015)
[11] Brizard, Alain J., Phys. Plasmas, 11, 9, 4429-4438 (2004)
[12] Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, P.; Gillot, C.; Latu, G.; Passeron, C., Nucl. Fusion (2017)
[13] S. Hirshman, D.J. Sigmar, Neoclassical transport of impurities in tokamak plasmas, 21 (01) (1981) 1079.
[14] Crank, J.; Nicolson, P., Adv. Comput. Math., 6, 1, 207-226 (1996) · Zbl 0866.65054
[15] Kim, Y. B.; Diamond, P. H.; Groebner, R. J., Phys. Fluids B, 3, 8, 2050-2060 (1991)
[16] Chang, C. S.; Hinton, F. L., Phys. Fluids, 29, 10, 3314-3316 (1986)
[17] Diamond, P. H.; Itoh, S.-I.; Itoh, K.; Hahm, T. S., Plasma Phys. Control. Fusion, 47, 5, R35 (2005)
[18] Rosenbluth, M. N.; Hinton, F. L., Phys. Rev. Lett., 80, 724-727 (1998)
[19] Hinton, F. L.; Rosenbluth, M. N., Plasma Phys. Control. Fusion, 41, 3A, A653 (1999)
[20] Zonca, F.; Chen, L., Europhys. Lett., 83, 3, 35001 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.