×

Global dynamics of Froude-type oscillators with superlinear damping terms. (English) Zbl 1374.34208

Summary: This paper deals with the damped superlinear oscillator \[ x'' + a(t)\phi_p\bigl(x' \bigr) + b(t)\phi_q\bigl(x'\bigr)+ \omega^2x = 0, \] where \(a(t)\) and \(b(t)\) are continuous and nonnegative for \(t\geq0\); \(p\) and \(q\) are real numbers greater than or equal to 2; \(\phi_{r}(x')=|x'|^{r-2}x'\). This equation is a generalization of nonlinear ship rolling motion with Froude’s expression, which is very familiar in marine engineering, ocean engineering and so on. Our concern is to establish a necessary and sufficient condition for the equilibrium to be globally asymptotically stable. In particular, the effect of the damping coefficients \(a(t)\), \(b(t)\) and the nonlinear functions \(\phi_{p}(x')\), \(\phi_{q}(x')\) on the global asymptotic stability is discussed. The obtained criterion is judged by whether the integral of a particular solution of the first-order nonlinear differential equation \[ u' + \omega^{p-2}a(t)\phi_p(u) + \omega^{q-2}b(t)\phi_q(u) + 1 = 0 \] is divergent or convergent. In addition, explicit sufficient conditions and explicit necessary conditions are given for the equilibrium of the damped superlinear oscillator to be globally attractive. Moreover, some examples are included to illustrate our results. Finally, our results are extended to be applied to a more complicated model.

MSC:

34D05 Asymptotic properties of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
34D45 Attractors of solutions to ordinary differential equations
37B25 Stability of topological dynamical systems
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Full Text: DOI

References:

[1] Artstein, Z., Infante, E.F.: On the asymptotic stability of oscillators with unbounded damping. Q. Appl. Math. 34, 195-199 (1976/77) · Zbl 0336.34048
[2] Bacciotti, A., Rosier, L.: Lyapunov Functions and Stability Control Theory. Springer, Berlin (2005) · Zbl 1078.93002
[3] Ballieu, R.J., Peiffer, K.: Attractivity of the origin for the equation \(\ddot{x} + f(t,\dot{x},\ddot{x})|\dot{x}|^{\alpha}\dot{x} + g(x) = 0\). J. Math. Anal. Appl. 65, 321-332 (1978) · Zbl 0387.34038 · doi:10.1016/0022-247X(78)90183-X
[4] Bass, D.W., Haddara, M.R.: Nonlinear models of ship roll damping. Int. Shipbuild. Prog. 35, 5-24 (1988)
[5] Bass, D.W., Haddara, M.R.: Roll and sway-roll damping for three small fishing vessels. Int. Shipbuild. Prog. 38, 51-71 (1991)
[6] Berg, M.: A three-dimensional airspring model with friction and orifice damping. Veh. Syst. Dyn. 33, 528-539 (1999)
[7] Brauer, F., Nohel, J.: The Qualitative Theory of Ordinary Differential Equations. Benjamin, New York (1969). Dover, New York (1989) (revised) · Zbl 0179.13202
[8] Bulian, G.: Approximate analytical response curve for a parametrically excited highly nonlinear 1-DOF system with an application to ship roll motion prediction. Nonlinear Anal., Real World Appl. 5, 725-748 (2004) · Zbl 1124.70303 · doi:10.1016/j.nonrwa.2004.03.002
[9] Cardo, A., Francescutto, A., Nabergoj, R.: On damping models in free and forced rolling motion. Ocean Eng. 9, 171-179 (1982) · doi:10.1016/0029-8018(82)90012-9
[10] Cesari, L., Asymptotic behavior and stability problems (1959), Berlin · Zbl 0082.07602
[11] Chan, H.S.Y., Xu, Z., Huang, W.L.: Estimation of nonlinear damping coefficients from large-amplitude ship rolling motions. Appl. Ocean Res. 17, 217-224 (1995) · doi:10.1016/0141-1187(95)00024-0
[12] Chun, H.H., Chun, S.H., Kim, S.Y.: Roll damping characteristics of a small fishing vessel with a central wing. Ocean Eng. 28, 1601-1619 (2001) · doi:10.1016/S0029-8018(00)00066-4
[13] Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. Heath, Boston (1965) · Zbl 0154.09301
[14] Dalzell, J.F.: A note on the form of ship roll damping. J. Ship Res. 22, 178-185 (1978)
[15] Duc, L.H., Ilchmann, A., Siegmund, S., Taraba, P.: On stability of linear time-varying second-order differential equations. Q. Appl. Math. 64, 137-151 (2006) · Zbl 1119.34039
[16] Grace, I.M., Ibrahim, R.A., Pilipchuk, V.N.: Inelastic impact dynamics of ships with one-sided barriers. Part I: analytical and numerical investigations. Nonlinear Dyn. 66, 589-607 (2011) · doi:10.1007/s11071-010-9937-6
[17] Haddara, M.R.: On the stability of ship motion in regular oblique waves. Int. Shipbuild. Prog. 18, 416-434 (1971)
[18] Haddara, M.R., Bass, D.W.: On the form of roll damping moment for small fishing vessels. Ocean Eng. 17, 525-539 (1990) · doi:10.1016/0029-8018(90)90021-W
[19] Halanay, A.: Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York (1966) · Zbl 0144.08701
[20] Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969). Krieger, Malabar (1980) (revised) · Zbl 0186.40901
[21] Hatvani, L.: On the asymptotic stability for a two-dimensional linear nonautonomous differential system. Nonlinear Anal. 25, 991-1002 (1995) · Zbl 0844.34050 · doi:10.1016/0362-546X(95)00093-B
[22] Hatvani, L.: Integral conditions on the asymptotic stability for the damped linear oscillator with small damping. Proc. Am. Math. Soc. 124, 415-422 (1996) · Zbl 0844.34051 · doi:10.1090/S0002-9939-96-03266-2
[23] Hatvani, L., Totik, V.: Asymptotic stability of the equilibrium of the damped oscillator. Differ. Integral Equ. 6, 835-848 (1993) · Zbl 0777.34036
[24] Hatvani, L., Krisztin, T., Totik, V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differ. Equ. 119, 209-223 (1995) · Zbl 0831.34052 · doi:10.1006/jdeq.1995.1087
[25] Hinemo, Y.: Prediction of ship roll damping-state of art. Dept. of Naval Architecture and Marine Engineering, The University of Michigan, Report No. 239 (1981)
[26] Ibrahim, R.A., Grace, I.M.: Modeling of ship roll dynamics and its coupling with heave and pitch. Math. Probl. Eng. 2010, 1-32 (2010). Article ID 934714 · Zbl 1191.93115 · doi:10.1155/2010/934714
[27] Ignatyev, A.O.: Stability of a linear oscillator with variable parameters. Electron. J. Differ. Equ. 1997(17), 1-6 (1997) · Zbl 0889.34043
[28] Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems. Dekker, New York (1989) · Zbl 0676.34003
[29] Levin, J.J., Nohel, J.A.: Global asymptotic stability for nonlinear systems of differential equations and application to reactor dynamics. Arch. Ration. Mech. Anal. 5, 194-211 (1960) · Zbl 0094.06402 · doi:10.1007/BF00252903
[30] Michel, A.N., Hou, L., Liu, D.: Stability Dynamical Systems: Continuous, Discontinuous, and Discrete Systems. Birkhäuser, Boston (2008) · Zbl 1146.34002
[31] Neves, M.A.S., Pérez, N.A., Valerio, L.: Stability of small fishing vessels in longitudinal waves. Ocean Eng. 26, 1389-1419 (1999) · doi:10.1016/S0029-8018(98)00023-7
[32] Pucci, P., Serrin, J.: Precise damping conditions for global asymptotic stability for nonlinear second order systems. Acta Math. 170, 275-307 (1993) · Zbl 0797.34059 · doi:10.1007/BF02392788
[33] Pucci, P., Serrin, J.: Asymptotic stability for intermittently controlled nonlinear oscillators. SIAM J. Math. Anal. 25, 815-835 (1994) · Zbl 0809.34067 · doi:10.1137/S0036141092240679
[34] Rouche, N., Habets, P., Laloy, M.: Stability Theory by Lyapunov’s Direct Method. Applied Mathematical Sciences, vol. 22. Springer, New York (1977) · Zbl 0364.34022 · doi:10.1007/978-1-4684-9362-7
[35] Senjanović, I., Parunov, J., Ciprić, G.: Safety analysis of ship rolling in rough sea. Chaos Solitons Fractals 8, 659-680 (1997) · Zbl 0963.70541 · doi:10.1016/S0960-0779(96)00114-2
[36] Shimozawa, K., Tohtake, T.: An air spring model with non-linear damping for vertical motion. Q. Rep. RTRI 49, 209-214 (2008) · doi:10.2219/rtriqr.49.209
[37] Smith, R.A.: Asymptotic stability of x″+a(t)x′+x=0. Q. J. Math. 12, 123-126 (1961) · Zbl 0103.05604 · doi:10.1093/qmath/12.1.123
[38] Sugie, J.: Global asymptotic stability for damped half-linear oscillators. Nonlinear Anal. 74, 7151-7167 (2011) · Zbl 1243.34073 · doi:10.1016/j.na.2011.07.028
[39] Sugie, J.: Smith-type criterion for the asymptotic stability of a pendulum with time-dependent damping. Proc. Am. Math. Soc. 141, 2419-2427 (2013) · Zbl 1273.34061 · doi:10.1090/S0002-9939-2013-11615-1
[40] Sugie, J., Hata, S.: Global asymptotic stability for half-linear differential systems with generalized almost periodic coefficients. Monatshefte Math. 166, 255-280 (2012) · Zbl 1241.34065 · doi:10.1007/s00605-011-0297-1
[41] Sugie, J., Shimadu, T., Yamasaki, T.: Global asymptotic stability for oscillators with superlinear damping. J. Dyn. Differ. Equ. 24, 777-802 (2012) · Zbl 1273.34062 · doi:10.1007/s10884-012-9256-3
[42] Taylan, M.: The effect of nonlinear damping and restoring in ship rolling. Ocean Eng. 27, 921-932 (2000) · doi:10.1016/S0029-8018(99)00026-8
[43] Üçer, E.: Examination of the stability of trawlers in beam seas by using safe basins. Ocean Eng. 38, 1908-1915 (2011) · doi:10.1016/j.oceaneng.2011.09.027
[44] Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions. Applied Mathematical Sciences, vol. 14. Springer, New York (1975) · Zbl 0304.34051 · doi:10.1007/978-1-4612-6376-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.