×

\(N=2\) topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant. (English) Zbl 0769.53017

Summary: We discuss gauge theory with a topological \(N=2\) symmetry. This theory captures the de Rham complex and Riemannian geometry of some underlying moduli space \(\mathcal M\) and the partition function equals the Euler number \(\chi({\mathcal M})\) of \(\mathcal M\). We explicitly deal with moduli spaces of instantons and of flat connections in two and three dimensions. To motivate our constructions we explain the relation between the Mathai- Quillen formalism and supersymmetric quantum mechanics and introduce a new kind of supersymmetric quantum mechanics based on the Gauss-Codazzi equations. We interpret the gauge theory actions from the Atiyah-Jeffrey point of view and relate them to supersymmetric quantum mechanics on spaces of connections. As a consequence of these considerations we propose the Euler number \(\chi({\mathcal M})\) of the moduli space of flat connections as a generalization to arbitrary three-manifolds of the Casson invariant. We also comment on the possibility of constructing a topological version of the Penner matrix model.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Akbulut, S., McCarthy, J.D.: Casson’s invariant for oriented homology 3-spheres – an exposition. Mathematical Notes 36. Princeton, NJ: Princeton University Press 1990 · Zbl 0695.57011
[2] Alvarez-Gaumé, L.: Supersymmetry and the Atiyah-Singer index theorem. Commun. Math. Phys.90, 161 (1983) · Zbl 0528.58034 · doi:10.1007/BF01205500
[3] Atiyah, M.F.: New invariants of three- and four-dimensional manifolds. In: The mathematical heritage of Hermann Weyl. Proc. Symp. Pure Math. 48. Wells, R. et al. (eds.) Providence, RI: Am. Math. Soc. 1988
[4] Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London A362, 425 (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[5] Atiyah, M.F., Jeffrey, L.: Topological Lagrangians and cohomology. J. Geom. Phys.7, 120 (1990) · Zbl 0721.58056 · doi:10.1016/0393-0440(90)90023-V
[6] Atiyah, M.F., Singer, I.M.: Dirac operators coupled to vector potentials. Proc. Nat’l Acad. Sci. (USA)81, 2597 (1984) · Zbl 0547.58033 · doi:10.1073/pnas.81.8.2597
[7] Babelon, O., Viallet, C.M.: The Riemannian geometry of the configuration space of gauge theories. Commun. Math. Phys.81, 515 (1981) · Zbl 0495.58003 · doi:10.1007/BF01208272
[8] Baulieu, L., Grossman, B.: Monopoles and topological field theory. Phys. Lett.214B, 223 (1988)
[9] Baulieu, L., Singer, I.M.: Topological Yang-Mills symmetry. Nucl. Phys. Proc. Suppl.5B, 12 (1988) · Zbl 0958.58500 · doi:10.1016/0920-5632(88)90366-0
[10] Baulieu, L., Singer, I.M.: The topological sigma-model. Commun. Math. Phys.125, 227 (1989) · Zbl 0684.57016 · doi:10.1007/BF01217907
[11] Birmingham, D., Blau, M., Rakowski, M., Thompson, G.: Topological field theory. Phys. Rep.209, Nos. 4, 5 129–340 (1991) · doi:10.1016/0370-1573(91)90117-5
[12] Birmingham, D., Blau, M., Thompson, G.: Geometry and quantization of topological gauge theories. Int. J. Mod. Phys. A5, 4721 (1990) · Zbl 0738.58055 · doi:10.1142/S0217751X90002014
[13] Birmingham, D., Rakowski, M., Thompson, G.: Topological field theories, Nicolai maps and BRST quantization. Phys. Lett.212B, 187 (1988)
[14] Birmingham, D., Rakowski, M., Thompson, G.: BRST quantization of topological field theories. Nucl. Phys. B315, 577 (1989) · doi:10.1016/0550-3213(89)90003-5
[15] Bishop, R.L., Crittenden, R.J.: Geometry of manifolds. New York: Academic Press 1964 · Zbl 0132.16003
[16] Blau, M.: The Mathai-Quillen formalism and topological field theory. Lectures given at the Karpacz Winter School on Infinite Dimensional Geometry in Physics (17–27 February 1992), to appear in the Proceedings
[17] Blau, M., Thompson, G.: Topological gauge theories from supersymmetric quantum mechanics on spaces of connections. To appear in Int. J. Mod. Phys. A (1992)
[18] Bott, R., Tu, L.W.: Differential forms in algebraic topology. Berlin, Heidelberg, New York: Springer 1986 · Zbl 0496.55001
[19] Boyer, S., Lines, D.: Surgery formulae for Casson’s invariant and extension to homology lens spaces. In: Rapport de recherches, Université du Québec à Montréal (1988), p. 66 · Zbl 0691.57004
[20] Brown, K.S.: Euler characteristics of discrete groups andG-spaces. Invent. Math.27, 229 (1974) · Zbl 0294.20047 · doi:10.1007/BF01390176
[21] Cappell, S.E., Lee, R., Miller, E.Y.: A symplectic geometry approach to generalized Casson’s invariants of 3-manifolds. Bull. (NS) A.M.S.22, 269 (1990) · Zbl 0699.57009 · doi:10.1090/S0273-0979-1990-15885-9
[22] Distler, J.: 2D quantum gravity, topological field theory and the multicritical matrix models. Nucl. Phys. B342, 523 (1990) · doi:10.1016/0550-3213(90)90325-8
[23] Distler, J., Vafa, C.: A critical matrix model atc=1. Mod. Phys. Lett. A6, 259 (1991) · Zbl 1020.81747 · doi:10.1142/S0217732391000221
[24] Donaldson, S.K.: A polynomial invariant for smooth four-manifolds. Topology29, 257 (1990) · Zbl 0715.57007 · doi:10.1016/0040-9383(90)90001-Z
[25] Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds. Oxford Mathematical Monographs. Oxford: Clarendon Press 1990 · Zbl 0820.57002
[26] Eguchi, T., Yang, S.-K.:N=2 superconformal models as topological field theories. Mod. Phys. Lett. A5, 1693 (1990) · Zbl 1020.81833 · doi:10.1142/S0217732390001943
[27] Floer, A.: An instanton-invariant for 3-manifolds. Commun. Math. Phys.118, 215 (1988); Witten’s complex and infinite-dimensional Morse theory. J. Diff. Geom.30, 207 (1989) · Zbl 0684.53027 · doi:10.1007/BF01218578
[28] Fomenko, A.T.: Differential geometry and topology (Contemporary Soviet Mathematics). New York: Plenum 1987
[29] Freed, D.S., Uhlenbeck, K.K.: Instantons and four-manifolds. M.S.R.I. publications. Berlin, Heidelberg, New York: Springer 1984 · Zbl 0559.57001
[30] Friedan, D., Windey, P.: Supersymmetric derivation of the Atiyah-Singer index theorem. Nucl. Phys. B235, 395 (1984) · doi:10.1016/0550-3213(84)90506-6
[31] Goldman, W.: The symplectic nature of fundamental groups of surfaces. Adv. Math.54, 200 (1984); Topological components of spaces of representations. Invent. Math.93, 557 (1988) · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[32] Goldman, W.M., Magid, A.R. (eds.): Geometry of group representations. Contemp. Math.74 (1988) · Zbl 0651.00007
[33] Groisser, D., Parker, T.H.: The Riemannian geometry of the Yang-Mills moduli space. Commun. Math. Phys.112, 663 (1987) · Zbl 0637.53037 · doi:10.1007/BF01225380
[34] Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math.85, 457 (1986) · Zbl 0616.14017 · doi:10.1007/BF01390325
[35] Hempel, J.: 3-Manifolds. Ann. Math. St. 86. Princeton, NJ: Princeton University Press 1976 · Zbl 0345.57001
[36] Hirzebruch, F.: Topological methods in algebraic geometry. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0138.42001
[37] Horne, J.: Superspace versions of topological theories. Nucl. Phys. B318, 22 (1989) · doi:10.1016/0550-3213(89)90046-1
[38] Kanno, H.: Weyl algebra structure and geometrical meaning of BRST transformation in topological quantum field theory. Z. Phys. C43, 477 (1989) · doi:10.1007/BF01506544
[39] Kazama, Y., Suzuki, H.: NewN=2 superconformal field theories and superstring compactification. Nucl. Phys. B321, 232 (1989) · doi:10.1016/0550-3213(89)90250-2
[40] Kirwan, F.: On the homology of compactifications of moduli spaces of vector bundles over Riemann surfaces. Proc. London Math. Soc.53, 235 (1986) · Zbl 0607.14017 · doi:10.1112/plms/s3-53.2.237
[41] Labastida, J.M.F., Pernici, M.: A gauge invariant action in topological quantum field theory. Phys. Lett.212B, 56 (1988)
[42] Labastida, J.M.F., Pernici, M., Witten, E.: Topological gravity in two dimensions. Nucl. Phys. B310, 611 (1988) · doi:10.1016/0550-3213(88)90094-6
[43] Lubotzky, A., Magid, A. R.: Varieties of representations of finitely generated groups. Mem. A.M.S. Vol.58, Nr. 336 (1985) · Zbl 0598.14042
[44] Mathai, V., Quillen, D.: Superconnections, Thom classes and equivariant differential forms. Topology25, 85 (1986) · Zbl 0592.55015 · doi:10.1016/0040-9383(86)90007-8
[45] Montano, D., Sonnenschein, J.: The topology of moduli space and quantum field theory. Nucl. Phys. B313, 258 (1989) Sonnenschein, J.: Topological quantum field theories, moduli spaces and flat gauge connections. Phys. Rev. D42, 2080 (1990) · doi:10.1016/0550-3213(89)90318-0
[46] Montesinos, J.M.: Classical tesselations and three-manifolds. Berlin, Heidelberg, New York: Springer 1990
[47] Narasimhan, N.S., Ramadas, T.R.: Geometry ofSU(2) gauge fields. Commun. Math. Phys.67, 121–136 (1979) · Zbl 0418.53029 · doi:10.1007/BF01221361
[48] O’Neill, B.: Semi-Riemannian geometry: with applications to relativity. New York: Academic Press 1983
[49] Penner, R.C.: Perturbative series and the moduli space of Riemann surfaces. J. Diff. Geom.27, 35–53 (1988) · Zbl 0608.30046
[50] Satake, I.: The Gauss-Bonnet theorem forV-manifolds. J. Math. Soc. Japan9, 464 (1957) · Zbl 0080.37403 · doi:10.2969/jmsj/00940464
[51] Singer, I.M.: Some remarks on the Gribov ambiguity. Commun. Math. Phys.60, 7 (1978) · Zbl 0379.53009 · doi:10.1007/BF01609471
[52] Taubes, C.H.: Casson’s invariant and gauge theory. J. Diff. Geom.31, 547 (1990) · Zbl 0702.53017
[53] Thompson, G.: Lectures at the Summer school on high-energy physics and cosmology. Trieste, July 1991
[54] Thurston, W.: The geometry and topology of 3-manifolds. Princeton Univ. Press, to appear · Zbl 0483.57007
[55] Walker, K.: An extension of Casson’s invariant to rational homology spheres. Bull. (NS) A.M.S.22, 261 (1990); An extension of Casson’s invariant. Princeton, NJ: Princeton University Press (Annals of Mathematics Studies) 1991 · Zbl 0699.57008 · doi:10.1090/S0273-0979-1990-15883-5
[56] Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom.17, 661 (1982) · Zbl 0499.53056
[57] Witten, E.: Topological quantum field theory. Commun. Math. Phys.117, 353 (1988) · Zbl 0656.53078 · doi:10.1007/BF01223371
[58] Witten, E.: Topology changing amplitudes in 2+1-dimensional gravity. Nucl. Phys. B323, 113 (1989) · doi:10.1016/0550-3213(89)90591-9
[59] Witten, E.: On the structure of the topological phase of two-dimensional gravity. Nucl. Phys. B340, 281 (1990) · doi:10.1016/0550-3213(90)90449-N
[60] Witten, E.: Lecture at the Conference on topological methods in quantum field theory. Trieste, June 1990
[61] Witten, E.: TheN matrix model and gauged WZW models. IAS preprint (June 1991)
[62] Yamron, J.P.: Topological actions from twisted supersymmetric theories. Phys. Lett.212B, 325 (1988)
[63] Yoshii, H.: Hidden higher supersymmetries in topological conformal field theories. Phys. Lett.259B, 279 (1991)
[64] Fintushel, R., Stern, R.J.: Instanton homology of Seifert fibred homology three spheres. Proc. Lond. Math. Soc.61, 109–137 (1990) · Zbl 0705.57009 · doi:10.1112/plms/s3-61.1.109
[65] Kirk, P.A., Klassen, E.P.: Representation spaces of Seifert fibered homology spheres. Topology30, 77–95 (1991) · Zbl 0721.57007 · doi:10.1016/0040-9383(91)90035-3
[66] Bauer, S., Okonek, C.: The algebraic geometry of representation spaces associated to Seifert fibered homology 3-spheres. Math. Ann.286, 45–76 (1990) · Zbl 0723.57012 · doi:10.1007/BF01453565
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.