×

A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I. (English) Zbl 1073.83019

This paper begins with a brief but nicely written survey of the positivity of mass problem and points out certain difficulties are still present in the spinor approach to this problem and regarding boundary terms. Section 2 and 3 discuss the definition of the total energy-momenta and sort out some mathematical preliminaries. A spinor proof of the positivity of mass is given in section 4. In section 5, the author shows that his definition of total energy coincides with the Bondi mass at least in a certain case and in certain time slices of the Kerr-AdS space-time. The interested reader may wish to consult three other papers by the same author [Angular momentum and positive mass theorem, Commun. Math. Phys. 206, No. 1, 137–155 (1999; Zbl 1007.83014); Strongly asymptotically hyperbolic spin manifolds, Math. Res. Lett. 7, No. 5–6, 719–727 (2000; Zbl 0979.53054); Remarks on the total angular momentum in general relativity, Commun. Theor. Phys. 39, No. 5, 521–524 (2003)].

MSC:

83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83C80 Analogues of general relativity in lower dimensions
Full Text: DOI

References:

[1] Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16, 1–27 (1998) · Zbl 0946.53021 · doi:10.1023/A:1006547905892
[2] Arnowitt, S., Deser, S., Misner, C.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, 997–1006 (1961) · Zbl 0094.23003 · doi:10.1103/PhysRev.122.997
[3] Ashtekar, A., Das, S.: Asymptotically anti-de Sitter spacetimes: conserved quantities. Class Quantum Grav. 17, L17–L30 (2000) · Zbl 0943.83023
[4] Ashtekar, A., Hansen, R.: A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 19, 1542–1566 (1978)
[5] Ashtekar, A., Horowitz, G.: Energy-momentum of isolated systems cannot be null. Phys. Lett. 89A, 181–184 (1982) · doi:10.1016/0375-9601(82)90203-1
[6] Ashtekar, A., Magnon, A.: From i{\(\deg\)} to the 3+1 description of spatial infinity. J. Math. Phys. 25, 2682–2690 (1984) · Zbl 0559.53044 · doi:10.1063/1.526500
[7] Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 36, 661–693 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[8] Bartnik, R.: Quasi-spherical metrics and prescribed scalar curvature. J. Diff. Geom. 37, 31–71 (1993) · Zbl 0786.53019
[9] Bondi, H., van der Burg, H., Metzner, A.: Gravitational waves in general relativity VII. Waves from isolated axi-symmetric systems. Proc. Roy. Soc. Lond. A 269, 21–52 (1962) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[10] Bray, H.: Proof of the Riemannian Penrose conjecture using the positive mass theorem. J. Diff. Geom. 59, 177–267 (2001) · Zbl 1039.53034
[11] Bryant, R.: Surfaces of mean curvature one in hyperbolic space. Astérisque 154–155, 321–347 (1987)
[12] Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space-Time (Erice, 1985), NATO, Adv. Sci. Inst. Ser. B: Phys. 138, New York: Plenum 1986, pp. 49–59
[13] Chruściel, P.: On angular momentum at spatial infinity. Class. Quantum Grav. 4, L205–210 (1987) · Zbl 0624.53050
[14] Chruściel, P., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. math.DG/0110035 · Zbl 1056.53025
[15] Chruściel, P., Jezierski, J., MacCallum, M.: Uniqueness of the Trautman-Bondi mass. Phys. Rev. D58, 084001 (1998)
[16] Chruściel, P., Nagy, G.: The mass of spacelike hypersurfaces in asymptotically anti-de Sitter space-times. Adv. Theor. Math. Phys. 5, 697–754 (2001) · Zbl 1033.53061
[17] Delay, E.: Analyse précisée d’équations semi-linéaires elliptiques sur l’espace hyperbolique et application à la courbure scalaire conforme. Bull. Soc. Math. France 125, 345–381 (1997) · Zbl 0939.53026
[18] Folland, G.: Introduction to Partial Differential Equations (Second Edition). Princeton, NJ: Princeton University Press, 1995 · Zbl 0841.35001
[19] Gibbons, G., Hawking, S., Horowitz, G., Perry, M.: Positive mass theorems for black holes. Commun. Math. Phys. 88, 295–308 (1983) · doi:10.1007/BF01213209
[20] Graham, C., Lee, J.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87, 186–225 (1991) · Zbl 0765.53034 · doi:10.1016/0001-8708(91)90071-E
[21] Herzlich, M.: A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds. Commun. Math. Phys. 188, 121–133 (1997) · Zbl 0886.53032 · doi:10.1007/s002200050159
[22] Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97–111 (1998) · Zbl 0947.83022 · doi:10.1016/S0393-0440(97)00040-5
[23] Herzlich, M.: Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces. Math. Ann. 312, 641–657 (1998) · Zbl 0946.53022 · doi:10.1007/s002080050240
[24] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Diff. Geom. 59, 353–437 (2001) · Zbl 1055.53052
[25] Horowitz, G., Myers, R.: The AdS/CFT correspondence and a new positive energy conjecture for general relativity. Phys. Rev. D59, 026005 (1999)
[26] Horowitz, G., Perry, M.: Gravitational energy cannot become negative. Phys. Rev. Lett. 48, 371–374 (1982) · doi:10.1103/PhysRevLett.48.371
[27] Horowitz, G., Tod, P.: A relation between local and total energy in general relativity. Commun. Math. Phys. 85, 429–447 (1982) · Zbl 0501.53017 · doi:10.1007/BF01208723
[28] Israel, W., Nester, J.: Positivity of the Bondi gravitational mass. Phys. Lett. 85A, 259–260 (1981) · doi:10.1016/0375-9601(81)90951-8
[29] Lawson, H., Michelsohn, M.: Spin Geometry. Princeton Math. Series, Vol. 38, Princeton, NJ: Princeton University Press, 1989 · Zbl 0688.57001
[30] Lee, J.: The specturm of an asymptotically hyperbolic Einstein manifold. Comm. Anal. Geom. 3, 253–271 (1995) · Zbl 0934.58029
[31] Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 31–81 (1987) · Zbl 0633.53062
[32] Ludvigsen, M., Vickers, J.: A simple proof of the positivity of the Bondi mass. J. Phys. A: Math. Gen. 15, L67–L70 (1982)
[33] Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989) · Zbl 0686.53038 · doi:10.1007/BF01452046
[34] Nester, J.: A new gravitational energy expression with a simple positivity proof. Phys. Lett. 83A, 241–242 (1981) · doi:10.1016/0375-9601(81)90972-5
[35] Parker, T., Taubes, C.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982) · Zbl 0528.58040 · doi:10.1007/BF01208569
[36] Penrose, R.: Some unsolved problems in classical general relativity. In: Seminar on Differential Geometry, ed. S.-T. Yau, Annals of Math. Stud. 102, Princeton, NJ: Princeton Univ. Press, 1982, pp. 631–668 · Zbl 0481.53053
[37] Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286–318 (1974) · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[38] Reula, O., Tod, K.: Positivity of the Bondi energy. J. Math. Phys. 25, 1004–1008 (1984) · doi:10.1063/1.526267
[39] Rossman, W., Umehara, M., Yamada, K.: Mean curvature 1 surfaces in hyperbolic 3-space with lower total curvature I. math.DG/0008015 · Zbl 1088.53004
[40] Rossman, W., Umehara, M., Yamada, K.: Mean curvature 1 surfaces in hyperbolic 3-space with lower total curvature II. math.DG/0102035 · Zbl 1058.53008
[41] Sachs, R.: Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proc. Roy. Soc. Lond, A 270, 103–126 (1962) · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[42] Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[43] Schoen, R., Yau, S.-T.: The energy and the linear momentum of spacetimes in general relativity. Commun. Math. Phys. 79, 47–51 (1981) · Zbl 0934.83031 · doi:10.1007/BF01208285
[44] Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79, 231–260 (1981) · Zbl 0494.53028 · doi:10.1007/BF01942062
[45] Schoen, R., Yau, S.-T.: Proof that the Bondi mass is positive. Phys. Rev. Lett. 48, 369–371 (1982) · doi:10.1103/PhysRevLett.48.369
[46] Schoen, R., Yau, S.-T.: The existence of a black hole due to condensation of matter. Commun. Math. Phys. 90, 575–579 (1983) · Zbl 0541.53054 · doi:10.1007/BF01216187
[47] Umehara, M., Yamada, K.: Complete surface of constant mean curvature-1 in the hyperbolic 3-space. Ann. Math. 137, 611–638 (1993) · Zbl 0795.53006 · doi:10.2307/2946533
[48] Wang, X.: Mass for asymptotically hyperbolic manifolds. J. Diff. Geom. 57, 273–299 (2001) · Zbl 1037.53017
[49] Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
[50] Yau, S.-T.: Geometry of three manifolds and existence of black hole due to boundary effect. Adv. Theor. Math. Phys. 5, 755–767 (2001) · Zbl 1019.53016
[51] York, J.: Energy and momentum of the gravitational field. In: Essays in General Relativity, ed. F.J. Tipler, New York: Academic Press, 1980 · Zbl 0467.53040
[52] Zhang, X.: Angular momentum and positive mass theorem. Commun. Math. Phys. 206, 137–155 (1999) · Zbl 1007.83014 · doi:10.1007/s002200050700
[53] Zhang, X.: Strongly asymptotically hyperbolic spin manifolds. Math. Res. Lett. 7, 719–728 (2000) · Zbl 0979.53054 · doi:10.4310/MRL.2000.v7.n6.a5
[54] Zhang, X.: Remarks on the total angular momentum in general relativity. Commun. Theor. Phys. 39, 521–524 (2003) · doi:10.1088/0253-6102/39/5/521
[55] Zhang, X.: In preparation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.